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Chapter 1

Euler’s Method

How do computers approximate the solution to a differential equation that cannot be
explicitly solved? Let’s consider the differential equation

dy

dx
= x+ y with initial condition y(0) = 1

.

This means the solution passes through the point (0, 1). Additionally, the slope of the
solution is dy

dx = 0 + 1 = 1 at that point. This means we can approximate the solution
with the linear function L(x) = x + 1 (see figure 1.1). As you can see, near (0, 1) the
approximation is good, but as x increases, the divergence between the actual solution and
the approximation grows.

1

1

solution curve

L(x)

x

y

Figure 1.1: A first Euler approximation

How can we make a better approximation? Suppose we stop the first approximation
at x = 1.5, re-evaluate dy

dx , and use that to make a second linear approximation. When
x = 0.5, L(x) = 0.5 + 1 = 1.5. Taking the point (0.5, 1.5), then dy

dx = 0.5 + 1.5 = 2. We can
then write a second linear approximation, L2(x) = 2(x−0.5)+1.5 = 2x−1+1.5 = 2x+0.5.
As you can see (figure 1.2), this new approximation is closer than our first approximation.
We call this an approximation with a step size of 0.5.

We can improve this further by taking a step size of 0.25 (see figure 1.3). As the step size
decreases and the step number increases, the approximation gets closer and closer to the
true solution.
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4 Chapter 1. EULER’S METHOD

1
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Figure 1.2: An Euler approximation with step size 0.5
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Figure 1.3: An Euler approximation with step size 0.25
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In general, Euler’s method is a numerical process similar to sketching a solution on a
slope field. One begins at the given initial value, proceeds for a short step in the direction
indicated by the slope field. You adjust the slope of your approximation based on the
value of the slope field at the end of each step.

For a first-order differential equation, let dy
dx = F(x, y) and y(x0) = y0. If we have step size

h, then our successive x-values are x1 = x0 + h, x2 = x1 + h, etc. The differential equation
tells us that the slope at x0 is F(x0, y0). So, y1 = y0 + hF(x0, y0) (see figure 1.4).

x0 x1

y0

h

hF(x0, y0)

(x1, y1)slope = F(x0, y0)

x

y

Figure 1.4: Visualization of Euler’s method

Continuing, once we have found y1, we can then define x2 = x1+h and y2 = y1+hF(x1, y1).
And in general, for an initial-value problem when dy

dx = F(x, y) and y(x0) = y0, we can
make an approximation with step size h where:

yn = yn−1 + hF(xn−1, yn−1)

where n = 1, 2, 3, · · · .

Example: Use Euler’s method with a step size of 0.2 to approximate the value of y(1) if
dy
dx = 2x+ y and y(0) = 1.

Solution: We are given h = 0.2, x0 = 0, y0 = 1, and F(x, y) = 2x + y. This means we will
need 5 steps to reach x5 = 1. So, we know that:

y1 = 1+ 0.2[2(0) + 1] = 1+ 0.2[1] = 1.2

y2 = 1.2+ 0.2[2(0.2) + 1.2] = 1.2+ 0.2(1.6) = 1.52

y3 = 1.52+ 0.2[2(0.4) + 1.52] = 1.984

We can continue in this manner. The results are shown in the table:
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n xn yn F(xn, yn)

0 0 1 1
1 0.2 1.2 1.6
2 0.4 1.52 2.32
3 0.6 1.984 3.184
4 0.8 2.6208 4.2208
5 1 3.46496 –

Therefore, y(1) ≈ 3.4696.

Example: This problem was originally presented as a no-calculator, multiple-choice ques-
tion on the 2012 AP Calculus BC exam. Let y = f(x) be the solution to dy

dx = x − y

with initial condition f(1) = 3. What is the approximation of f(2) obtained using Euler’s
method with two steps of equal length starting at x = 1?

Solution: The question asks that we use Euler’s method two steps. The step size should
be h = x2−x0

2 = 2−1
2 = 1

2 . Taking x0 = 1 and y0 = 3, we find that:

y1 = y0 + h [x0 − y0]

y1 = 3+
1

2
[1− 3]

y1 = 3+
1

2
[−2] = 3− 1 = 2

So our intermediate point is (x1, y1) = ( 32 , 2). Finding y2:

y2 = y1 + h [x1 − y1]

y2 = 2+
1

2

[
3

2
− 2

]
y2 = 2+

1

2

[
−1

2

]
= 2−

1

4
=

7

4

So the approximate value of f(2) is 7
4 .
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Exercise 1

.

In the previous chapter on slope fields,
we discussed the behavior of inductors
in electronic circuits. As you may recall,
capacitors also exhibit more complex be-
havior than regular resistors. Consider a
circuit with a resistor and capacitor (see
figure below). Let the resistor have re-
sistance R ohms and the capacitor have
capacitance C farads. By Kirchhoff’s law,
we know that:

RI+
Q

C
= V

where Q is the charge on each side of
the capacitor and Q

C is the voltage drop
across the capacitor. Recall that current
is the change in charge over time. There-
fore, I = dQ

dt , and we can write the dif-
ferential equation:

R
dQ

dt
+

1

C
Q = V

When the switch is first closed, there is
no charge (that is, Q(0) = 0). If the re-
sistor is 5Ω, the battery is 60V , and the
capacitor is 0.05F, use Euler’s methodwith
a step size of 0.1 to estimate the charge
after half a second.

V

switch

R

C

Answer on Page 57

Working Space
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Exercise 2

.[This problem was originally presented
as a calculator-allowed, free-response ques-
tion on the 2012 AP Calculus BC exam.]
The function f is twice- differentiable for
x > 0with f(1) = 15 and f ′′(1) = 20. Val-
ues of f ′, the derivative of f, are given for
selected values of x in the table below.
Use Euler’s method, starting at x = 1

with two steps of equal size, to approxi-
mate f(1.4). Show the computations that
lead to your answer.

x 1 1.1 1.2 1.3 1.4
f ′(x) 8 10 12 13 14.5

Answer on Page 60

Working Space





Chapter 2

Sequences in Calculus

We introduced sequences in a previous chapter. Now, wewill examine them inmore detail
in the context of calculus. You already know about arithmetic and geometric sequences,
but not all sequences can be classified as arithmetic or geometric. Take the famous Fi-
bonacci sequence, {1, 1, 2, 3, 5, 8, ...}, which can be explicitly defined as an = an−1+an−2,
with a1 = a2 = 1. There is no common difference or common ratio, so the Fibonacci
sequence is not arithmetic or geometric. Another example is an = sin nπ

6 , which will cycle
through a set of values.

Sequences have many real-world applications, including compound interest and modeling
population growth. In later chapters, you will learn that the sum of all the values in a
sequence is a series and how to use series to describe functions. In order to be able to do
all that, we first need to talk in depth about sequences.

Some sequences are defined explicitly, like an = sin nπ
6 , while others are defined recur-

sively, like an = an−1 + an−2.

Example: Write the first 5 terms for the explicitly defined sequence an = n
n+1 .

Solution: We can construct a table to keep track of our work:

n work an

1 1
1+1

1
2

2 2
2+1

2
3

3 3
3+1

3
4

4 4
4+1

4
5

5 5
5+1

5
6

So, the first five terms are { 12 ,
2
3 ,

3
4 ,

4
5 , and

5
6}.
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Exercise 3

.Write the first five terms for each sequence.

1. an = 2n

2n+1

2. an = cos nπ
2

3. a1 = 1, an+1 = 5an − 3

4. a1 = 6, an+1 =
an
n+1

Answer on Page 57

Working Space

2.1 Convergence and Divergence

You can visualize a sequence on an xy-plane or a number line. Figures 2.1 and 2.2 show
visualizations of the sequence an = n

n+1 . To visualize this on the xy-plane, we take points
such that x = n and y = an, where n is a positive integer. What do you notice about this
sequence? As n increases, an gets closer and closer to 1.

1
4

1
2

3
4

1

a1 a2 a3 a4 a∞

Figure 2.1: an = n
n+1 on a number line

Because an approaches a specific number as n → ∞, we call the series an = n
n+1 convergent.

We prove a sequence is convergent by taking the limit as n approaches ∞. If the limit
exists and approaches a specific number, the sequence is convergent. If the limit does not
exist or approaches ±∞, the sequence is divergent.

We can see graphically that limn→∞ n
n+1 = 1, so that sequence is convergent. What about

bn = n√
10+n

? Is bn convergent or divergent?

lim
n→∞ n√

10+ n
= lim

n→∞ n/n√
10
n2 + n

n2

= lim
n→∞ 1√

10
n2 + 1

n

= ∞
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2 4 6 8 10 12 14

−0.5

0.5

1

1.5

n

an

Figure 2.2: an = n
n+1 on an xy-plane

Therefore, the sequence bn = n√
10+n

is divergent.

Here is another example of a divergent sequence: cn = sin nπ
2 . The graph is shown

in figure 2.3. As you can see, the value of cn oscillates between 1, 0, and -1 without
approaching a specific number. This means that cn does not approach a particular number
as n → ∞ and the sequence is divergent.

2 4 6 8

−1

1

n

cn

Figure 2.3: cn = sin nπ
2 on an xy-plane
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Exercise 4

.Classify each sequence as convergent or
divergent. If the sequence is convergent,
find the limit as n → ∞.

1. an = 3+5n2

n+n2

2. an = n4

n3−2n

3. an = 2+ (0.86)n

4. an = cos nπ
n+1

5. an = sinn

Answer on Page 58

Working Space

2.2 Evaluating limits of sequences

Recall that a sequence can be considered a function where the domain is restricted to
positive integers. If there is some f(x) such that an = f(n) when n is an integer, then
limn→∞ an = limx→∞ f(x) (see figure 2.4). This means that all the rules that apply to the
limits of functions also apply to the limits of sequences, including the Squeeze Theorem
and l’Hospital’s rule.

Example: What is limn→∞ lnn
n ?

Solution: First, we will try to compute the limit directly:

lim
n→∞ lnn

n
=

limn→∞ lnn

limn→∞ n
=

∞∞
This is undefined, but fits the criteria for L’Hospital’s rule:

lim
n→∞ lnn

n
= lim

n→∞
d
dn lnn

d
dnn
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= lim
n→∞

1
n

1
= 0

2 4 6 8

0.5

1

1.5

2

n

an

Figure 2.4: The limit of the function is the same as the limit of the sequence

Example: Is the sequence an = n!
nn convergent or divergent?

Solution: First trying to take the limit directly, we see that:

lim
n→∞ n!

nn
=

∞∞
which is undefined. Because the factorial cannot be described as a continuous function,
we can’t use L’Hospital’s rule. We can examine this sequence graphically (see figure 2.5)
and mathematically. We examine it mathematically by writing out a few terms to get an
idea of what happens to an as n gets large:

a1 =
1!

11
= 1

a2 =
2!

22
=

1 · 2
2 · 2

a3 =
3!

33
=

1 · 2 · 3
3 · 3 · 3

· · ·

an =
n!

nn
=

1 · 2 · 3 · · · · n
n · n · n · · ·n

From examining the graph in figure 2.5, we can guess that limn→∞ an = 0. Let’s prove



16 Chapter 2. SEQUENCES IN CALCULUS

that mathematically. We can rewrite our expression for an as n gets larger:

an =
n!

nn
=

1 · 2 · 3 · · · · n
n · n · n · · ·n

=
1

n
(
2 · 3 · · ·n
n · n · · ·n

)

The expression inside the parentheses is less than 1; therefore, 0 < an < 1
n . Since

limn→∞0 = 0 and limn→∞ 1
n = 0, by Squeeze Theorem, we know that limn→∞ n!

nn = 0.
Therefore, the sequence an = n!

nn is convergent.

2 4 6 8

0.2

0.4

0.6

0.8

1

n

an

Figure 2.5: an = n!
nn

[[FIXME intro]] If limn→∞ an = L and the function f is continuous at L, then limn→∞ f(an) =
f(L). For example, what is limn→∞ sin π

n? Well, we know that limn→∞ π
n = 0 and that the

sine function is continuous at 0. Therefore, limn→∞ sin π
n = sin limn→∞ π

n = sin 0 = 0.

2.3 Monotonic and Bounded sequences

Just like functions, sequences can be increasing or decreasing. A sequence is increasing
if an < an+1 for n ≥ 1. Similarly, a sequence is decreasing if an > an+1 for n ≥ 1. If a
sequence is strictly increasing or decreasing, it is called monotonic.

The sequence an = 1
n+6 is decreasing. We prove this formally by comparing an to an+1:

1

n+ 6
>

1

(n+ 1) + 6
=

1

n+ 7

Example: Is the sequence an = n
n2+1

increasing or decreasing?
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Solution: First, we find an expression for an+1:

an+1 =
n+ 1

(n+ 1)2 + 1
=

n+ 1

n2 + 2n+ 2

Since the degree of n is greater in the denominator, we have a guess that the sequence is
decreasing. To prove this, we check if an > an+1 is true:

n

n2 + 1
>

n+ 1

n2 + 2n+ 2

We can cross-multiply, because n > 0 and the denominators are positive:

(n)(n2 + 2n+ 2) > (n+ 1)(n2 + 1)

n3 + 2n2 + 2n > n3 + n2 + n+ 1

Subtracting (n3 + n2 + n) from both sides we see that:

n2 + n > 1

Which is true for all n ≥ 1. Therefore, an > an+1 for all n ≥ 1 and the sequence is
decreasing.

A sequence is bounded above if there is some number M such that an ≤ M for all n ≥ 1. A
sequence is bounded below if there is some other number m such that an ≥ m for all n ≥ 1.
If a sequence is bounded above and below, then it is a bounded sequence.

Not all bounded sequences are convergent. Take our earlier example of an = sin nπ
6 . This

sequence is bounded, since we can say that −1 ≤ an ≤ 1 for all n. However, an = sin nπ
6

is divergent because limn→∞ sin nπ
6 does not exist (see figure 2.6). Additionally, not all

monotonic sequences are convergent. Consider bn = 2n (shown in figure 2.7). This is
monotonically increasing (that is, bn > bn−1 for all n), but limn→∞ 2n = ∞ and the
sequence is divergent.

A sequence must be convergent if it is both monotonic and bounded. Why is this? Recall
that to be bounded, a sequence must be bounded above and below, which means there
is some m and some M such that m ≤ an ≤ M for all n. If the sequence is increasing,
the terms must get close to but not exceed M. Likewise, if the sequence is decreasing, the
terms must get close to, but not be less than m.

Example: Is the sequence given by an = 4 and an+1 = 1
2(an + 7) bounded above, below,

both, or neither?

Solution: We start by calculating the first several terms:
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4 8 12 16 20 24

−1

1

M = 1

m = −1

n

Figure 2.6: The sequence an = sin nπ
6 is bounded and divergent

1 2 3 4 5

10

20

30

m = 2

n

Figure 2.7: The sequence bn = 2n is bounded below, monotonically increasing, and diver-
gent
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Term Work Value
a1 a1 = 4 4
a2 = 1

2(4+ 7) 5.5
a3 = 1

2(5.5+ 7) 6.25
a4 = 1

2(6.25+ 7) 6.625
a5 = 1

2(6.625+ 7) 6.8125
a6 = 1

2(6.8125+ 7) 6.90625
a7 = 1

2(6.90625+ 7) 6.953125
a8 = 1

2(6.953125+ 7) 6.9765625

The sequence is increasing, so it is bounded below by the initial term, a1 = 4, and we
can state that an ≥ 4. Examining the computed terms, we see that an → 7 as n grows
larger. We can guess that this sequence is bounded above, with an ≤ 7. We can prove this
by induction. Suppose that there is some k such that ak < 7 (which is true for a1, etc.).
Then,

ak < 7

ak + 7 < 14

1

2
(ak + 7) <

1

2
(14)

ak+1 < 7

Therefore, an < 7 for all n and the sequence is bounded above. Because the sequence
is monotonic and bounded, we know the sequence is convergent and, therefore, that the
limit of an as n → ∞ exists.

2.4 Applications of Sequences

2.4.1 Compound Interest

You previously learned about compound interest and modeled the accumulation of com-
pound interest by Pn = P0(1 + r)n, where P0 is the principal investment, r is the yearly
interest rate, and n is the number of elapsed years. This sequence describes the value of
an investment accumulating interest, but most people add to their savings on a regular
schedule. We can write a sequence to model the value of a savings account that the owner
makes regular deposits into.

Example: Suppose you open a savings account with an initial deposit of $3,000 and you
plan to deposit an additional $1,200 at the end of every year. If your savings account has
an annual interest rate of 3.25%, how long will it take you to save $10,000?

Solution: We can write a recursive definition for the sequence. At the end of each year,
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the account will gain the interest on the entirety of the previous year’s balance plus $1200:

Pn = Pn−1(1+ 0.0325) + $1200

With an initial investment P0 = $3000. We can write out the first few terms to find how
many years it will take to save $10,000:

Year Savings
0 $3,000
1 $4,297.50
2 $5,637.17
3 $7,020.38
4 $8,448.54
5 $9.923.12
6 $11,445.62

The accumulation of interest with deposits is better described by a sequence than a func-
tion. That iss because the deposits are happening at discrete times, not continuously.

Exercise 5

.You invest $1500 at 5%, compounded an-
nually. Write an explicit formula that
describes the value of your investment
every year. What will your investment
be worth after 10 years? Is the sequence
convergent or divergent? Explain.

Answer on Page 58

Working Space

2.4.2 Population Growth

Sequences can be used to model a reproducing population that is being occasionally culled
from or added to. Similar to compound interest, a population of living things (plants,
animals, fungi, etc.) reproducing at a rate r can be modeled with an exponential function:

Pn = P0(1+ r)n
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where P0 is the initial population, r is the yearly reproductive rate, and n is the number
of years elapsed.

Example: Suppose the population of deer in a national park is estimated to be 6,500. If
the deer reproduce at a rate of 8% per year and wolves hunt and kill 500 deer per year,
how many deer will be in the park in 5 years?

Solution: We can write a recursive sequence:

Pn = Pn−1(1+ 0.08) − 500

P0 = 6500

And calculate P5 (we round to the nearest whole number because half of a deer is not a
living deer):

Year Population
1 6500(1.08) − 500 6520
2 6520(1.08) − 500 6542
3 6542(1.08) − 500 6565
4 6565(1.08) − 500 6590
5 6590(1.08) − 500 6617

There will be 6617 deer in the park after 5 years.

Exercise 6

.A farmer keeps his pond stocked with
fish. If the fish are eaten by predators at
a rate of 5% per month and the farmer
can afford to restock the pond with 10
fish every 6 months. If the farmer starts
with 100 fish, how many total fish will
he have lost to predation after 4 years?

Answer on Page 58

Working Space
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Series

When writing a number with an infinite decimal, such as the Golden Ratio (also known
as the Golden Number):

φ = 1.618033988 · · ·

The decimal system means we can rewrite the Golden Ratio (or any irrational number)
as an infinite sum:

φ = 1+
6

10
+

1

102
+

8

103
+

0

104
+

3

105
+ · · ·

You might recall from the chapter on Riemann Sums that we can represent the addition
of many (or infinite) with big sigma notation:

n∑
i=1

ai

where i is the index as discussed in Sequences and n is the number of terms. For infinite
sums, n = ∞.

3.1 Partial Sums

Let’s quickly define a partial sum. A partial sum is where we only look at the first n terms
of a series. For the general series,

∑n
i=1 ai, the partial sums are:

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

· · ·

sn = a1 + a2 + · · ·+ an =

n∑
i=1

ai

Example: A series is given by
∑∞

i=1(
−3
4 )i. What is the value of the partial sum s4?

23
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Solution: s4 is the sum of the first 4 terms:

(
−3

4
)1 + (

−3

4
)2 + (

−3

4
)3 + (

−3

4
)4

=
−3

4
+

9

16
+

−27

64
+

81

256
=

−75

256

3.2 Reindexing

Sometimes it is necessary to re-index series. This means changing what n the series starts
at . In general, ∞∑

n=i

an =

∞∑
n=i+1

an−1 and
∞∑
n=i

an =

∞∑
n=i−1

an+1

In other words, to increase the index by 1, you need to replace n with (n − 1) and do
decrease the index by 1, you need to replace n with (n + 1). Let’s visualize why this is
true (see figure 3.1). Notice that for each series, the terms are the same. This is similar to
shifting functions: to move the function to the left on the x-axis, you plot f(x+ 1), and to
move it to the right, f(x− 1).

1 2 3 4 5

0.2

0.4

0.6

0.8

1

n

an ∑∞
n=0

1
n+1∑∞

n=1
1
n∑∞

n=2
1

n−1

Figure 3.1:
∑∞

n=0
1

n+1 =
∑∞

n=1 an =
∑∞

n=2 = 1+ 1
2 +

1
3 + · · ·

We can also prove each reindexing rule mathematically. Recall that

∞∑
n=1

an = a1 + a2 + a3 + · · ·
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We also know that
∞∑
n=2

an−1 = a2−1 + a3−1 + a4−1 + · · · = a1 + a2 + a3 + · · ·

Therefore,
∑∞

n=1 an =
∑∞

n=2 an−1.

Similarly,

∞∑
n=0

an+1 = a0+1 + a1+1 + a2+1 + · · · = a1 + a2 + a3 + · · · =
∞∑
n=1

an

Example: Reindex the series
∑∞

n=3
n+1
n2−2

to begin with n = 1.

Solution: We are decreasing the index, so we will use
∑∞

n=i−1 an+1 =
∑∞

n=i an. We will
apply this rule twice, to decrease the index from 3 to 1:

∞∑
n=2

(n+ 1) + 1

(n+ 1)2 − 2
=

∞∑
n=2

n+ 2

(n+ 1)2 − 2

∞∑
n=1

(n+ 1) + 2

[(n+ 1) + 1]2 − 2
=

∞∑
n=1

n+ 3

(n+ 2)2 − 2

It is easier and faster to be able to reindex a series by more than one step at a time. Using
the example above, we can write an even more general rule for reindexing:

∞∑
n=i

an =

∞∑
n=i+j

an−j

where i and j are integers. (Then, to decrease the index, you would choose a j such that
j < 0.)

3.3 Convergent and Divergent Series

Just like sequences, series can also be convergent or divergent. Consider the series
∑∞

i=1 i.
Given what you already know about the meaning of ”convergent” and ”divergent”, guess
whether

∑∞
i=1 i is convergent or divergent.

Let’s determine the first few partial sums of the series (shown graphically in figure 3.2):
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n Terms Partial Sum
1 1 1
2 1+2 3
3 1+2+3 6
4 1+2+3+4 10

2 4 6 8 10

10

20

30

40

50

n

sn

Figure 3.2: For the divergent series
∑n

i=1 i, the value of the partial sum increases to infinity
as n increases

As you can see, as n increases, the value of the partial sum increases without approaching
a particular value. We can also see that the value of the first n terms summed together is
n(n+1)

2 . This means that as n approaches ∞, the sum also approaches ∞ and the series is
divergent.

Obviously, for a series to not become overly large, the values of the terms should decrease
as i increases (that is, each subsequent term is smaller than the one before it). Take the
series

∑∞
i=1

1
2i
. As i increases, 1

2i
decreases. Let’s look at the first few partial sums of this

series (shown graphically in figure 3.3):

n Terms Partial Sum
1 1

2
1
2

2 1
2 +

1
4

3
4

3 1
2 +

1
4 +

1
8

7
8

4 1
2 +

1
4 +

1
8 +

1
16

15
16

Do you see the pattern? The nth partial sum is equal to 2n−1
2n = 1− 1

2n . And as n approaches∞, the partial sum approaches 1. The series
∑∞

i=1
1
2i

is convergent.
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2 4 6 8

1

n

sn

Figure 3.3: For the convergent series
∑n

i=1
1
2i
, the value of the partial sum approaches 1

as n increases

Let’s define the sequence {sn}, where sn is the nth partial sum of a series:

sn =

n∑
i=1

ai

.

If the sequence {sn} is convergent and limn→∞ sn exists, then the series
∑∞

i=1 ai is also
convergent. And if the sequence {sn} is divergent, then the series

∑∞
i=1 ai is also divergent.

Example: Is the harmonic series,
∑∞

n=1
1
n convergent or divergent?

Solution: You may think that the series is convergent, since limn→∞ 1
n = 0. Let’s see if we

can confirm this. We begin by looking at the partial sums s2, s4, s8, and s16:

s2 = 1+
1

2

s4 = 1+
1

2
+

(
1

3
+

1

4

)
> 1+

1

2
+

(
1

4
+

1

4

)
= 1+

2

2

s8 = 1+
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
> 1+

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
= 1+

3

2

s16 = 1+
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+

(
1

9
+ · · ·+ 1

16

)
>

1+
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+

(
1

16
+ · · ·+ 1

16

)
= 1+

4

2

Notice that, in general, s2n > 1 + n
2 for n > 1. Taking the limit as n → ∞, we see that
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limn→∞ s2n > limn→∞ 1+ n
2 = ∞. Therefore, s2n also approaches ∞ as n gets larger and

the harmonic series
∑∞

n=1
1
n is divergent.

This example shows a very important point: A series whose terms decrease to zero as n
gets large is not necessarily convergent. What we can say, though, is that if the limit as n
approaches infinity of the terms of a series does not exist or is not zero, then the series
is divergent (i.e., not convergent). This is called the Test for Divergence, and we will
explore it further in the next chapter.

3.3.1 Properties of Convergent Series

We just saw that if limn→∞ an 6= 0 then the series
∑∞

n=1 an diverges. The contrapositive
statement gives a property of convergent series:

If the series
∞∑
n=1

an is convergent, then lim
n→∞ = 0

If a series is made of other convergent series, it may be convergent. Recall, if a series is
convergent, this means the limn→∞∑n

i=1 ai = L. By the properties of limits, we can also
say that the series multiplied by a constant is convergent:

∞∑
n=1

can = c · L = c

∞∑
n=1

an

Suppose there is another convergent series such that limn→∞∑n
i=1 bi = M. In this case,

the sum of those series is also convergent. That is:

∞∑
n=1

(an + bn) = L+M =

∞∑
n=1

an +

∞∑
n=1

bn

Similarly, the difference of the series is convergent:

∞∑
n=1

(an − bn) = L−M =

∞∑
n=1

an −

∞∑
n=1

bn

3.4 Geometric Series

A geometric series is the sum of a geometric sequence, and has the form:

∞∑
n=1

arn or
∞∑
n=1

arn−1
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Where a is some constant and r is the common ratio. For
∑∞

n=1 ar
n−1, a is also the first

term.

Example: Write the series 1+ 1
2 +

1
4 +

1
8 + · · · in sigma notation.

Solution: We see that the first term is a = 1 and the common ratio is 1
2 , so we can write

the series: ∞∑
n=1

1(
1

2
)n−1 =

∞∑
n=1

(
1

2
)n−1

When are geometric series convergent? First, let’s consider the case where r = 1. If this is
true, then sn = a+a+a+ · · ·+a = na. As n approaches ∞, the sum will approach ±∞
(depending on whether a is positive or negative), and the series is divergent.

When r 6= 1, we can write sn and rsn:

sn = a+ ar+ ar2 + · · ·+ arn−1

rsn = ar+ ar2 + ar3 + · · ·+ arn

Subtracting rsn from sn, we get:

sn − rsn = (a+ ar+ ar2 + · · ·+ arn−1) − (ar+ ar2 + ar3 + · · ·+ arn−1 + arn)

= a− arn

Solving for sn, we find:

sn =
a(1− rn)

1− r

We take the limit as n → ∞ to determine for what values of r the series converges:

lim
n→∞ sn = lim

n→∞ a(1− rn)

1− r

= lim
n→∞

[
a

1− r
−

arn

1− r

]
=

a

1− r
−

(
a

1− r

)
lim
n→∞ rn

This introduces the question: When is limn→∞ rn convergent? From the sequences chap-
ter, we know this limit converges if |r| < 1 (that is, −1 < r < 1). If this is true, then
limn→∞ rn = 0 and

lim
n→∞ sn =

a

1− r
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2 4 6 8 10

r > 1

r = 1

0 < r < 1

n

Figure 3.4: Geometric sequences are divergent if r ≥ 1

2 4 6 8 10

r > 1

r = −1

−1 < r < 0

n

Figure 3.5: Geometric sequences are divergent if r ≤ 1. Notice that for r = −1, the partial
sums alternate between the initial term and zero.

(see figures 3.4 and 3.5 for a visual)

Example: Find the sum of the geometric series given by 2− 2
3 +

2
9 −

2
27 + · · · .

Solution: The first term is a = 2, and each common ratio is r = −1
3 . Since |r| < 1, we know

that the series converges. We can calculate the value of the sum using the geometric series
formula: ∞∑

i=1

a(r)i−1 =
a

1− r

∞∑
i=1

2(
−1

3
)i−1 =

2

1− −1
3

=
2
4
3

=
6

4
= 1.5
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We can confirm this graphically (see figure 3.6). You can also write out the first several
partial sequences. You should find the sums approach 1.5 as n increases.

2 4 6 8

−1

1

2

n

sn
an

Figure 3.6: the nth term and partial sums of
∑n

i=1 2(
−1
3 )i−1

Example: What is the value of
∑∞

n=1 2
2n51−n

Solution: The key here is to re-write the series in the form
∑∞

n=1 ar
n−1 so we can use the

fact that convergent geometric series sum to a
1−r .

∞∑
n=1

22n51−n =

∞∑
n=1

(
22
)n(1

5

)n−1

=

∞∑
n=1

4 · (4)n−1

(
1

5

)n−1

=

∞∑
n=1

4 ·
(
4

5

)n−1

Which is in the form
∑∞

n=1 ar
n−1 with a = 4 and r = 4

5 . Since |r| < 1, the series converges
to

a

1− r
=

4

1− 4
5

=
4
1
5

= 20
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Exercise 7

.Determine whether the geometric series
is convergent or divergent. If it is con-
vergent, find its sum.

1. 3− 4+ 16
3 − 64

9 + · · ·

2. 2+ 0.5+ 0.125+ 0.03125+ · · ·

3.
∑∞

n=1
(−3)n−1

4n

4.
∑∞

n=1
e2n

6n−1

Answer on Page 59

Working Space

Exercise 8

.Find a value of c such that
∑∞

n=0(1 +
c)−n = 5

3 .

Answer on Page 59

Working Space

Exercise 9

.For what values of p does the series
∑∞

n=1

(
p
2

)n
converge?

Answer on Page 60

Working Space
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3.5 p-series

A p-series takes the form
∑∞

n=1
1
np and converges if p > 1 and diverges if p ≤ 1. We won’t

prove this here, since it requires the application of a test you will learn about in the next
chapter.

Example Write the series 1+ 1
3√
2
+ 1

3√
3
+ 1

3√
4
+ · · · . Is it convergent or divergent?

Solution: We see that an = 1
3
√
n
, so the infinite series is

∞∑
n=1

1
3
√
n

. We see that this is a p-series with p = 1
3 . Since p < 1, the series is divergent.
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Exercise 10

.Euler found that the exact sum of the p-
series where p = 2 is:

∞∑
n=1

1

n2
=

π2

6

And that the exact sum of the p-series
where p = 4 is:

∞∑
n=1

1

n4
=

π4

90

Use this and the properties of conver-
gent series to find the sum of each of the
following series:

1.
∑∞

n=1
n2+1
n4

2.
∑∞

n=2
1
n2

3.
∑∞

n=3
1

(n+1)2

4.
∑∞

n=1

(
3
n

)4
5.

∑∞
n=1

(
4
n2 + 3

n4

)

Answer on Page 60

Working Space
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Exercise 11

.For what values of k does the series
∑∞

n=1
1

n2k

converge?

Answer on Page 60

Working Space

3.6 Alternating Series

An alternating series is one in which the terms alternate between positive and negative .
Here is an example:

−
1

2
+

2

3
−

3

4
+

4

5
−

5

6
+ · · · =

∞∑
n=1

(−1)n
n

n+ 1

Alternating series are generally of the form

an = (−1)nbn or an = (−1)n−1bn

Where bn is positive (and therefore, |an| = bn).

An alternating series is convergent if (i)bn+1 ≤ bn and (ii)limn→∞ bn = 0. In other words,
we say that if the absolute value of the terms of a series decrease towards zero, then the
series converges. This is called the Alternating Series Test.

0 s2 s4 s6 s s5 s3 s1

b1

−b2

+b3

−b4

+b5

−b6

Figure 3.7: As n increases, sn approaches s

Example: Is the alternating harmonic series
∑∞

n=1
(−1)n−1

n convergent?

Solution: The Alternating series test states that an alternating series is convergent if
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|an+1| < |an|: ∣∣∣∣(−1)n−1+1

n+ 1

∣∣∣∣ < ∣∣∣∣(−1)n−1

n

∣∣∣∣
1

n+ 1
<

1

n

Since |an+1| < |an| and the series is alternating,
∑∞

n=1
(−1)n−1

n is convergent.

Exercise 12

.Test the following alternating series for
convergence:

1.
∑∞

n=1
(−1)n3n
4n−1

2.
∑∞

n=1(−1)n+1 n2

n3+1

3.
∑∞

n=1(−1)n−1e2/n

Answer on Page 60

Working Space
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Convergence Tests for Series

4.1 Test for Divergence

Recall from the previous chapter that if the terms of a series do not approach zero as n

approaches infinity, then the series is divergent. This is the Test for Divergence, and there
are two possible outcomes. For a series

∑∞
n=1 an:

If lim
n→∞an 6= 0, then the series diverges

If lim
n→∞an = 0, then the test is inconclusive

It is important to remember that the Test for Divergence cannot tell us conclusively that a
series converges. Rather, it only identifies series that are divergent.

Example: Apply the Test for Divergence to the series
∑∞

n=1

√
n and

∑∞
n=1

1
n

Solution: limn→∞√
n = ∞ 6= 0. Therefore, the series

∑∞
n=1

√
n is divergent.

limn→∞ 1
n = 0. Therefore, the series

∑∞
n=1

1
n may be divergent or convergent. This is the

harmonic series, which we proved to be divergent in the previous chapter. This is a good
example that demonstrates that just because limn→∞ an = 0 does not mean the series is
convergent.

4.2 The Integral Test

We were able to determine the exact value of some infinite series because it was possible
to write the nth partial sum, sn, in terms of n. For example, we determined that the nth

partial sum of
∑n

i=1
1
2i

is sn = 1 − 1
2n . However, it is not always possible to do this. How

can we estimate the value of an infinite series in cases where we can’t explicitly write sn
in terms of n?

Consider the series
∑∞

i=1
1
i2
. The first few terms are:

∞∑
i=1

1

2i
=

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+ · · ·

37
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The series is decreasing, but is it convergent? Let’s plot this series on an xy-plane (see
figure 4.1).

1 2 3 4 5 6

i

1
2i

Figure 4.1: The first 5 terms of
∑∞

i=1
1
2i

We can overlay the function y = 1
2x (figure 4.2). We can draw rectangles of width 1 and

height 1
x2

(see figure 4.3). The area of the first n rectangles is equal to the nth partial sum.

1 2 3 4 5 6

i

1
2i

Figure 4.2: The first 5 terms of
∑∞

i=1
1
2i

lie on the curve y = 1
x2

This should remind you of a Riemann sum. Since the total area of the rectangles is less
than the area under the curve, we can state:

∞∑
i=1

1

2i
<

∫∞
0

1

x2
dx
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1 2 3 4 5 6

area = 1
12

area = 1
22

area = 1
32

area = 1
42

area = 1
52

i

1
2i

Figure 4.3: The partial sum
∑n=5

i=1
1
2i

is equal to the area of the rectangles

We can exclude the first rectangle and also state that:

∞∑
i=1

1

2i
< 1+

∫∞
1

1

x2
dx

We can evaluate this integral: ∫∞
1

1

x2
dx = lim

t→∞
[∫ t

1

1

x2
dx

]

= lim
t→∞ −1

x
|tx=1 = lim

t→∞
(
−1

t

)
−

−1

1
= 0− (−1) = 1

Therefore: ∞∑
i=1

1

2i
< 1+ 1 = 2

This means the series
∑∞

i=1
1
2i

is bounded above. Since the series is also monotonic (each
term is positive, so the value of the sum increases as n increases), we can state that the
sum is convergent!

Let’s look at a divergent example:
∑∞

i=1
1√
x
. Again, we will make a visual, but this time

we will draw rectangles that lie above the curve y = 1√
x
(see figure 4.4). In this case,∑∞

i=1
1√
x
>

∫∞
1

1√
x
dx. Let’s evaluate the integral:∫∞

1

1√
x
dx = lim

t→∞
[∫ t

1

1√
x
dx

]
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= lim
t→∞

[
2
√
x
]t
x=1

= lim
t→∞

(
2
√
t
)
− 2

√
1 = ∞− 2 → divergent

Since the integral diverges to infinity and the series is greater than the integral, the series
must also diverge to infinity. This is another case where a monotonic decreasing series is
not convergent!

1 2 3 4 5 6

area = 1√
1
area = 1√

2
area = 1√

3
area = 1√

4
area = 1√

5

n

Figure 4.4:
∑∞

i=1
1√
x
>

∫∞
1

1√
x
dx

This leads us to the Integral Test. If f is a continuous, positive, decreasing function on
the interval x ∈ [1,∞) and an = f(n), then the series

∑∞
n=1 an converges if and only if∫∞

1 f(x)dx is convergent. Subsequently, if
∫∞
1 f(x)dx is divergent, then the series is also

divergent.

Example: Is the series
∑∞

i=1
1

n2+1
convergent or divergent?

Solution: To apply the integral test, we define f(x) = 1
x2+1

, which is a positive, decreasing
function on the interval x ∈ [1,∞).∫∞

1

1

x2 + 1
dx = lim

t→∞
∫ t
1

1

x2 + 1
dx

= lim
t→∞ [arctan x]tx=1 = lim

t→∞ (arctan t) − arctan 1 =
π

2
−

π

4
=

π

4

Because the integral
∫∞
1

1
x2+1

dx converges, so does the series
∑∞

n=1
1

n2+1
.
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Exercise 13

.Use the integral test to determine if the
following series are convergent or diver-
gent.

1.
∑∞

n=1 2n
−3

2.
∑∞

n=1
5

3n−1

3.
∑∞

n=1
n

3n2+1

Answer on Page 61

Working Space
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Exercise 14

.Apply the Integral Test to show that p-
series

∑∞
n=1

1
np are convergent only when

p > 1 (hint: consider the cases p ≤ 0,
0 < p < 1, p = 1 and p > 1).

Answer on Page 61

Working Space

4.2.1 Using Integrals to Estimate the Value of a Series

Recall that
∑∞

i=1 ai = a1+a2+a3+ · · · = s and that the nth partial sum, often represented
as sn, is sn = a1+a2+ · · ·+an−1+an. We can then define the nth remainder Rn = s− sn.
Expanding s and sn, we see that:

Rn = [a1 + a2 + · · ·+ an−1 + an + an+1 + · · · ] − [a1 + a2 + · · ·+ an−1 + an]

Rn = [a1 − a1] + [a2 − a2] + · · ·+ [an−1 − an−1] + [an − an] + an−1 + an−2 + · · ·

Rn = an+1 + an+2 + an+3 + · · ·

Just like the integral test, suppose there is some continuous, positive, decreasing function,
such that an = f(n). We can then represent Rn as the right Riemann sum with width
∆x = 1 from x = n to ∞. Since the rectangles are below the curve (see figure 4.5), we can
state that Rn ≤

∫∞
n f(x)dx.

Similarly, we can represent Rn as the left Riemann sum with width ∆x = 1 from x = n+ 1

to ∞. This time, the rectangles are above the curve (see figure 4.6), and we can state that
Rn ≥

∫∞
n+1 f(x)dx. Putting this all together, we have an estimate for the remainder, Rn,

from the integral test:



Section 4.2 THE INTEGRAL TEST 43

n

an+1 an+2 an+3 · · · · · · · · · x

y

Figure 4.5: Rn ≤
∫∞
n f(x)dx

Suppose there is a function such that f(k) = ak, where f is a continuous, positive, decreas-
ing function for x ≥ n and

∑
an is convergent. Then,

∫∞
n+1 f(x)dx ≤ Rn ≤

∫∞
n f(x)dx,

where Rn is s− sn.

n+ 1

an+1 an+2 an+3 · · · · · · x

y

Figure 4.6: Rn ≥
∫∞
n+1 f(x)dx

Example: Approximate the sum of the series
∑∞

n=1
3
n3 by finding the 10th partial sum.

Estimate the error of this approximation.

Solution: Using a calculator, you can find the 10th partial sum:

10∑
n=1

3

n3
=

3

13
+

3

23
+

3

33
+ · · ·+ 3

103
≈ 3.593 = s10

Recall that the remainder, R10, is the difference between the actual sum, s, and the partial
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sum, s10. Using the integral test to estimate the remainder, we can state that:

R10 ≤
∫∞
10

3

x3
dx =

3

2(10)2
=

3

200
= 0.015

Therefore, the size of the error is at most 0.015.

Example: How many terms are required for the error to be less than 0.0001 for the sum
presented above?

Solution: We are looking for an n such that Rn ≤ 0.0001. Recalling that Rn ≤
∫∞
n

3
x3

dx,
we need to find an n such that

∫∞
n

3
x3

dx ≤ 0.0001.

∫∞
n

3

x3
dx ≤ 0.0001

−1

6x2
|∞x=n ≤ 0.0001

lim
x→∞ −1

6x2
−

−1

6n2
≤ 0.0001

0+
1

6n2
=

1

6n2
≤ 0.0001

1 ≤ 0.0006n2

1667 ≤ n2

40.8 ≤ n → n = 41

Therefore, s− s41 ≤ 0.0001 and the partial sum Σ41
n=1

3
n3 is less than 0.0001 from the value

of the infinite sum
∑∞

n=1
3
n3 .
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Exercise 15

.

1. Find the partial sum s10 of the se-
ries

∑∞
n=1

1
n4 .

2. Estimate the error from using s10
as an approximation of the series.

3. Use sn +
∫∞
n+1

1
x4

dx ≤ s ≤ sn +∫∞
n

1
x4

dx to give an improved es-
timate of the sum.

4. The actual value of
∑∞

n=1
1
n4 is π4

90 .
Compare your estimate with the ac-
tual value.

5. Find a value of n such that sn is
within 0.00001 of the sum.

Answer on Page 62

Working Space

4.3 Comparison Tests

In comparison tests, we compare a series to a known convergent or divergent series. Take
the series

∑∞
n=1

1
3n+3 . This is similar to

∑∞
n=1

1
3n , which is a geometric series that converges

to 1
2 . Notice that:

1

3n + 3
<

1

3n
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1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

n

sn
Σn
i=1

1
3n

Σn
i=1

1
3n+3

Figure 4.7:
∑n

i=1
1

3n+3 < Σn
i=1

1
3n for all n

Which implies that ∞∑
n=1

1

3n + 3
< Σ∞

n=1

1

3n

Since
∑∞

n=1
1
3n is convergent, it follows that

∑∞
n=1

1
3n+3 is also convergent (see figure 4.7).

As you can see, since
∑∞

n=1
1
3n approaches 1

2 ,
∑∞

n=1
1

3n+3 must be ≤ 1
2 and therefore con-

vergent.

4.3.1 The Direct Comparison Test

F For the Direct Comparison Test, we compare the terms an to bn directly. Take
∑

an

and
∑

bn to be series with positive terms. Then,

1. If an ≤ bn and
∑

bn is convergent, then
∑

an is also convergent.

2. If an ≥ bn and
∑

bn is divergent, then
∑

an is also divergent.

We already discussed above why the first part is true. The second part follows a similar
argument: If an is greater than bn, then you can imagine that as

∑
bn grows and diverges,

it is pushing upwards on
∑

an, meaning that
∑

an must also diverge. Consider the series∑∞
n=1

2 lnn
n . For n ≥ 2, 2 lnn > 1, and therefore if

∑∞
n=1

1
n diverges, then

∑∞
n=1

2 lnn
n must

also diverge. We recognize the harmonic series
∑∞

n=1
1
n is divergent. Therefore,

∑∞
n=1

2 lnn
n

is also divergent (see figure 4.8).
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n

Figure 4.8:
∑n

i=1
2 lnn
n >

∑n
i=1

1
n for n ≥ 4

4.3.2 The Limit Comparison Test

Consider the series
∑∞

n=1
1

2n−1 . We may want to compare this to the convergent series∑∞
n=1

1
2n . The direct comparison test isn’t helpful here, since 1

2n−1 > 1
2n , so

∑∞
n=1

1
2n

doesn’t put a cap on
∑∞

n=1
1

2n−1 like our earlier example (see figure 4.7). In a case such
as this, we can use the Limit Comparison Test, which states that:
If
∑

an and
∑

bn are series with positive terms and limn→∞ an
bn

= c > 0, then either both
series converge or both series diverge.

Let’s apply this to the series
∑∞

n=1
1

2n−1 . We know that
∑∞

n=1
1
2n converges, since it is a

geometric series with r < 1.

lim
n→∞

1
2n−1
1
2n

= lim
n→∞ 1

2n − 1
· 2

n

1

= lim
n→∞ 2n

2n − 1
= lim

n→∞ 1

1− 1/2n
=

1

1− 0
= 1 > 0

Therefore, by the Limit Comparison Test,
∑∞

n=1
1

2n−1 converges.

In general, comparison tests are most useful for series resembling geometric or p-series.
When choosing a p-series to compare the unknown series to, choose p such that the order
of your p series is the same as the order of the unknown series.

Example: What p-series should one compare the series
∑∞

n=1

√
n3+1

3n3+4n2+2
to?

Solution: We can determine the order of
√
n3+1

3n3+4n2+2
by looking at the highest-order terms
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in the numerator and denominator:
√
n3

n3
=

n3/2

n3
=

1

n3/2

So, we should compare
∑∞

n=1

√
n3+1

3n3+4n2+2
to the convergent p-series

∑∞
n=1

1
n3/2 .

Example: Is
∑∞

n=1

√
n3+1

3n3+4n2+2
convergent or divergent?

Solution: We have already determine that we should compare this series to
∑∞

n=1
1

n3/2 .
To apply the limit test, we need to evaluate

lim
n→∞

√
n3+1

3n3+4n2+2
1

n3/2

= lim
n→∞ n3/2

√
n3 + 1

3n3 + 4n2 + 2

= lim
n→∞

√
n6 + n3

3n3 + 4n2 + 2
=

1

3
> 0

Therefore, by the Limit Comparison Test,
∑∞

n=1

√
n3+1

3n3+4n2+2
is convergent because the p-

series
∑∞

n=1
1

n3/2 is convergent.
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Exercise 16

.Use the Comparison Test or the Limit
Comparison Test to determine if the fol-
lowing series are convergent or divergent.

1.
∑∞

n=1
1√

n2+1

2.
∑∞

n=1
9n

3+10n

3.
∑∞

n=1
n sin2 n
1+n3

Answer on Page 62

Working Space

4.4 Ratio and Root Tests for Convergence

4.4.1 Absolute Convergence

Suppose there is a series
∑∞

n=1 an, then there is a corresponding series
∑∞

n=1 |an| = |a1|+
|a2| + |a3| + · · · . If

∑∞
n=1 |an| is convergent, then the series

∑∞
n=1 an is called absolutely

convergent.

Example: Consider the alternating series

∞∑
n=1

(−1)n−1

n2
= 1−

1

22
+

1

32
+ · · ·

Is this series absolutely convergent?
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Solution: We examine the corresponding series where we take the absolute value of each
term: ∞∑

n=1

∣∣∣∣(−1)n−1

n2

∣∣∣∣ = ∞∑
n=1

1

n2

We can identify
∑∞

n=1
1
n2 as a convergent p-series. Since

∑∞
n=1

1
n2 is convergent, we can

state that
∑∞

n=1
(−1)n−1

n2 is absolutely convergent.

Example Is the convergent series
∑∞

n=1
(−1)n−1

n absolutely convergent?

Solution We consider the sum of the absolute values of the terms:
∞∑
n=1

∣∣∣∣(−1)n−1

n

∣∣∣∣ = ∞∑
n=1

1

n

You should recognize this as the harmonic series, which is divergent. When a series is
convergent but the corresponding series of absolute values is not, we call it conditionally
convergent.

We won’t prove the theorem here, but it is useful to know that if a series
∑∞

n=1 an is abso-
lutely convergent, then it is convergent. You can prove this yourself using the Comparison
Test.

Exercise 17

.Is the series given by

cos 1
12

+
cos 2
22

+
cos 3
33

+ · · ·

convergent or divergent?

Answer on Page 63

Working Space
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Exercise 18

.Determine whether each of the follow-
ing series is absolutely or conditionally
convergent.

1.
∑∞

n=1
(−1)n

3n+2

2.
∑∞

n=1
sinn
4n

3.
∑∞

n=1(−1)n−1 2n
n2+4

Answer on Page 63

Working Space

4.4.2 The Ratio Test

The ratio test compares the (n + 1)th term of a series to the nth term and takes the limit
as n → ∞ of the absolute value of this ratio:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L

There are three possible outcomes of the ratio test:

1. If L < 1, then the series
∑∞

n=1 an is absolutely convergent (and therefore convergent).

2. If L = 1, then the ratio test is inconclusive and we cannot draw any conclusions
about whether

∑∞
n=1 an is convergent or divergent.

3. If L > 1 or limn→∞ an+1

an
= ∞, then the series

∑∞
n=1 an is divergent.
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Example: Apply the ratio test to determine if
∑∞

n=1(−1)n n3

3n is convergent or divergent.

Solution:

lim
n→∞

∣∣∣∣∣∣
(−1)n+1(n+1)3

3n+1

(−1)nn3

3n

∣∣∣∣∣∣ = lim
n→∞ (n+ 1)3

3n+1
· 3

n

n3

= lim
n→∞ (n+ 1)3

n3
· 3n

3 · 3n

= lim
n→∞

(
n+ 1

n

)
· 1
3
=

1

3
lim
n→∞

(
n+ 1

n

)
=

1

3
· 1 =

1

3

Since L < 1, the series
∑∞

n=1(−1)n n3

3n is absolutely convergent.

The ratio test is most useful for series that contain factorials, constants raised to the nth

power, or other products.

Exercise 19

.[This question was originally presented
as a multiple-choice, no-calculator prob-
lem on the 2012 AP Calculus BC exam.]
Which of the following series are conver-
gent?

1.
∑∞

n=1
8n

n!

2.
∑∞

n=1
n!

n100

3.
∑∞

n=1
n+1

(n)(n+2)(n+3)

Answer on Page 64

Working Space
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Exercise 20

.[This question was originally presented
as a multiple-choice, calculator-allowed
problem on the 2012 APCalculus BC exam.]If
the series Σ∞

n=1an converges and an > 0

for all n, which of the following state-
ments must be true? Explain why.

1. limn→∞ ∣∣∣an+1

an

∣∣∣ = 0

2. |an| < 1 for all n

3.
∑∞

n=1 an = 0

4.
∑∞

n=1 nan diverges

5.
∑∞

n=1
an
n converges

Answer on Page 64

Working Space

4.4.3 Root Test

The root test examines the behavior of the nth root of an as n → ∞. Similar to the ratio
test, there are three possible outcomes:

1. If limn→∞ n
√
|an| = L < 1, then the series

∑∞
n=1 an is absolutely convergent, and

therefore convergent.

2. If limn→∞ n
√
|an| = L > 1 or limn→∞ n

√
|an| = ∞, then the series

∑∞
n=1 an is diver-

gent.

3. If limn→∞ n
√

|an| = L = 1, then the Root Test is inconclusive.

The root test is best when there is a term or terms raised to the nth power. Consider the
series

∑∞
n=1

(
2n+3
3n+2

)n:
Example: Is the series

∑∞
n=1

(
2n+3
3n+2

)n convergent or divergent?

Solution: Since an consists of terms raised to the nth power, we will apply the root test
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for convergence:

lim
n→∞ n

√∣∣∣∣(2n+ 3

3n+ 2

)n∣∣∣∣ = lim
n→∞ 2n+ 3

3n+ 2
=

2

3
< 1

Therefore, by the root test, the series
∑∞

n=1

(
2n+3
3n+2

)n is convergent.

Exercise 21

.Use the Root Test to determine whether
the following series are convergent or di-
vergent.

1.
∑∞

n=1

(
3n2+1
n2−4

)n
2.

∑∞
n=1

(−1)n

(lnn)n

3.
∑∞

n=1

(
1+ 1

n

)n2

Answer on Page 65

Working Space

4.5 Strategies for Testing Series

When testing series for convergence, we want to choose a test based on the form of the
series. While you may by tempted to try each test one-by-one until you find an answer,
this quickly becomes cumbersome and time-consuming. Additionally, if you plan to take
an AP Calculus exam, you need to be able to quickly choose an appropriate test as to
conserve the time you have available for the exam. Here are some tips:

1. Check if the series is a p-series (
∑∞

n=1
1
np ). If so, then if p > 1, the series converges.
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Otherwise, the series diverges.

2. If the series is not a p-series, check to see if you can write it as a geometric series
(
∑∞

n=1 ar
n−1 or

∑∞
n=1 ar

n). Recall that geometric series are convergent if |r| < 1 and
divergent otherwise.

3. If the series can’t be written as a p-series or geometric series, but has a similar form,
consider the comparison tests (the Direct Comparison Test and the Limit Compari-
son Test). When choosing a p-series to compare your series to, follow the guidelines
outlined in the Comparison Tests section above.

4. If you can see at a glance that limn→∞ an 6= 0, then apply the Test for Divergence to
show the series is divergent. REMEMBER: limn→∞ an 6= 0 implies the series

∑∞
n=1 an

is divergent, but limn→∞ an = 0 does not necessarily imply the series
∑∞

n=1 an is
convergent.

5. If the series is alternating (has (−1)n or (−1)n−1 in the term), the Alternating Series
test may provide an answer.

6. The Ratio Test is excellent for series with factorials, other products, or constants
to the nth power. Remember that the Ratio Test will be inconclusive for p-series,
rational functions of n, and algebraic functions of n.

7. If an is of the form (bn)
n, use the Root Test.

8. If an = f(n)where f(n) is continuous, positive, and decreasing and you can evaluate∫∞
1 f(x)dx, use the Integral Test.

You don’t need to treat this as a checklist, where you check for every condition. Rather,
you should use this as a guide to quickly determine the convergence test most likely to be
useful.
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Exercise 22

.Choose an appropriate test to determine
if the series is convergent of divergent.
Apply the test and classify the series as
convergent or divergent.

1.
∑∞

n=1
en

n2

2.
∑∞

n=1
3nn2

n!

3.
∑∞

n=2
1

n
√
lnn

4.
∑∞

n=1

(
n

n+1

)n2

5.
∑∞

n=1

(
n
√
2− 1

)n

Answer on Page 65

Working Space



Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 7)

Substituting the given values, we find that (5)dQdT + 1
0.05Q = 60. Solving for dQ

dt :

(5)
dQ

dt
+ (20)Q = 60

dQ

dt
+ 4Q = 12

dQ

dt
= 12− 4Q

We also know thatQ(0) = 0. Using Euler’s method with step size h = 0.1,Q(0.1) ≈ Q(0)+
h [12− 4Q(0)] = 0 + 0.1 [12− 4(0)] = 1.2. And Q(0.2) ≈ Q(0.1) + h [12− 4Q(0.1)] = 1.2 +
0.1 [12− 4(1.2)] = 1.92. AndQ(0.3) ≈ Q(0.2)+h [12− 4Q(0.2)] = 1.92+0.1 [12− 4(1.92)] =
2.352. And Q(0.4) ≈ Q(0.3) + h [12− 4Q(0.3)] = 2.352 + 0.1 [12− 4(2.352)] = 2.6112.
And finally, Q(0.5) ≈ Q(0.4) + h [12− 4Q(0.4)] = 2.6112 + 0.1 [12− 4(2.6112)] = 2.76672.
Because we are finding a charge, the unit it Coulombs (C), so our final answer is Q(0.5) ≈
2.77C.

Answer to Exercise 10 (on page 34)

We are given x0 = 1 and x2 = 1.4. Therefore we will use step size h = 1.4−1
2 = 0.4

2 = 0.2.
Taking x0 = 1 and y0 = f(1) = 15, we find y1: y1 = y0 + h · f ′(x0) = 15 + 0.2 · f ′(1) =
15 + 0.2(8) = 15 + 1.6 = 16.6. And then y2 = y1 + h · f ′(x1) = 16.6 + 0.2 · f ′(1.2) =
16.6+ 0.2(12) = 16.6+ 2.4 = 19. Therefore, f(1.4) ≈ 19.

Answer to Exercise 3 (on page 12)

1. 2
3 ,

4
5 ,

8
7 ,

16
9 , 32

11

2. 0, -1, 0, 1, 0

3. 1, 2, 7, 32, 157

4. 6, 3, 1, 1
4 ,

1
20

57
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Answer to Exercise 4 (on page 14)

1. convergent, 5

2. divergent

3. convergent, 2

4. convergent, -1

5. divergent

Answer to Exercise 5 (on page 20)

Out principal is P = 1500 and the interest rate is r = 0.06. After n years, your investment
will be worth an = 1500(1.06)n. For n = 10, your investment will be valued at a10 =
$1500(1.06)10 = $2686.27 (that’s over $1000 in interest!). To determine if the sequence is
convergent or divergent, we examine the limit as n → ∞:

lim
n→∞ 1500(1.06)n = 1500 · lim

n→∞(1.06)n = 1500 ·∞ = ∞
The sequence is divergent.

Answer to Exercise 6 (on page 21)

The number of fish in the pond is:

Pn = Pn−1(0.95)
6 + 50

P0 = 100

where n is the number of 6-month periods that have passed. The four-year period is given
by 1 ≤ n ≤ 8. The amount lost to predation every 6 months is given by Pn−1(1− 0.956).
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n Fish Population Lost to Predators
0 100
1 84 26
2 71 22
3 62 19
4 56 17
5 51 15
6 48 14
7 45 13
8 43 12

Adding up all the fish lost to predators, we find that over 4 years, the farmer loses 138
fish.

Answer to Exercise 7 (on page 32)

1. We need to identify a and r. If we use the form
∑∞

n=1 ar
n−1, then a = 3. To

find the common ratio, we can evaluate an+1

an
= −4

3 . We can then write the series as∑∞
n=1 3

(
−4
3

)n−1. In this case, r = −4
3 and |r| ≥ 1, and therefore the series is divergent.

2. Following the process outlined above, we see that a = 2 and r = 1
4 . Therefore, the

series is
∑∞

n=1 2
(
1
4

)n−1. Since |r| < 1, the series converges to a
1−r =

2
1−1/4

= 2·4
3 = 8

3

3. We need to rewrite the series into a standard from in order to identify a and r:

∞∑
n=1

(−3)n−1

4n
=

∞∑
n=1

(−3)n−1

4(4)n−1
=

∞∑
n=1

1

4

(
−3

4

)n−1

So r = −3
4 and |r| < 1. Therefore, the series converges to 1/4

1−(−3/4) =
1
4 ·

4
7 = 1

7

4. We need to rewrite the series into a standard from in order to identify a and r:

∞∑
n=1

e2n

6n−1
=

∞∑
n=1

(e2)n

6n−1
=

∞∑
n=1

(e2)(e2)n−1

6n−1
=

∞∑
n=1

e2
(
e2

6

)n−1

Therefore, r = e2

6 ≈ 1.232. Since |r| > 1, the series diverges.

Answer to Exercise 8 (on page 32)

We want to rewrite this as a geometric series of the form
∑∞

n=i ar
n−1, so we can use the

fact that the sum of a convergent geometric series is a
1−r .

∑∞
n=0(1+ c)−n =

∑∞
n=0

(
1

1+c

)n
=
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∑∞
n=1

(
1

1+c

)n−1. This is a geometric series with a = 1 and r = 1
1+c . So, the value of the

series is 1

1− 1
1+c

= 1
c

c+1
= c+1

c . Setting this equal to 5
3 and solving for c, we find that c = 3

2 .

Answer to Exercise 9 (on page 32)

−2 < p < 2 Let’s rewrite this geometric series into standard form:
∑∞

n=1

(
p
2

)n
=

∑∞
n=1

p
2

(
p
2

)n
which means a = p

2 and r = p
2 . We know that geometric series converge if |r| < 1, so we

set up an inequality and solve for p: ∣∣∣p
2

∣∣∣ < 1

−1 <
p

2
< 1

−2 < p < 2

Answer to Exercise 10 (on page 34)

1. Separating the terms, we see that
∑∞

n=1
n2+1
n4 =

∑∞
n=1

(
n2

n4 + 1
n4

)
=

∑∞
n=1

1
n2 +∑∞

n=1
1
n4 = π2

6 + π4

90

2. Notice that this series starts at n = 2. By the properties of series, we know that∑∞
n=1 an = a1 +

∑∞
n=2 an. Therefore,

∑∞
n=2

1
n2 =

∑∞
n=1

(
1
n2

)
− 1

12
= π2

6 − 1

3. We can begin by reindexing this series:
∑∞

n=3
1

(n+1)2
=

∑∞
n=4

1
n2 . Similar to the

previous problem, we also know that
∑∞

n=4
1
n2 =

∑∞
n=1

(
1
n2

)
−
(

1
12

+ 1
22

+ 1
32

)
=

π2

6 − 49
36

4. We can rewrite this series as
∑∞

n=1

(
3
n

)4
=

∑∞
n=1(3

4) 1
n4 = 81

∑∞
n=1

1
n4 = 81π4

90 = 9π4

10

5. We can re-write the series as
∑∞

n=1

(
4
n2 + 3

n4

)
=

∑∞
n=1

4
n2 +

∑∞
n=1

3
n4 = 4

∑∞
n=1

1
n2 +

3
∑∞

n=1
1
n4 = 4π2

6 + 3π4

90 = 2π2

3 + π4

30

Answer to Exercise 11 (on page 35)

This is a p-series where p = 2k. We know that p-series converge for p > 1: 2k > 1 → k > 1
2 .

Answer to Exercise 12 (on page 36)
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1. The series is convergent if
∣∣∣ (−1)n+13(n+1)

4(n+1)−1

∣∣∣ < ∣∣∣ (−1)n3n
4n−1

∣∣∣ if 3n+3
4n+4−1 < 3n

4n−1 and if 3n+3
4n+3 <

3n
4n−1 if (3n+ 3)(4n− 1) < (3n)(4n+ 3) if 12n2 + 12n− 3n− 3 < 12n2 + 9n if −3 < 0

which is true. Therefore,
∑∞

n=1
(−1)n3n
4n−1 is convergent.

2. The series is convergent if
∣∣∣(−1)n+1+1 (n+1)2

(n+1)3+1

∣∣∣ <
∣∣∣(−1)n+1 n2

n3+1

∣∣∣, which is true if
(n+1)2

(n+1)3+1
< n2

n3+1
if (n + 1)2(n3 + 1) < (n2)((n + 1)3 + 1) if (n2 + 2n + 1)(n3) <

(n2)(n3 + 3n2 + 3n + 1 + 1) if n5 + 2n4 + n3 < n5 + 3n4 + 3n3 + 2n2, which is true
for all n ≥ 1. Therefore,

∑∞
n=1(−1)n+1 n2

n3+1
is convergent.

3. The series is convergent if
∣∣(−1)n−1+1e2/(n+1)

∣∣ <
∣∣(−1)n−1e2/n

∣∣, which is true if
e2/(n+1) < e2/n, which is true if 2

n+1 < 2
n which is true for all n ≥ 1. Therefore,∑∞

n=1(−1)n−1e2/n is convergent.

Answer to Exercise 13 (on page 41)

1. The function 2x−3 is positive and decreasing for x ∈ [1,∞).
∫∞
1 2x−3 dx = limt→∞ ∫t

1 2x
−3 dx =

limt→∞ [−x−2
]t
x=1

= limt→∞(−t−2)−−(1)−2 = 0+1 = 1. Since the integral
∫∞
1 2x−3 dx

converges, the series
∑∞

n=1 2n
−3 is also convergent.

2. The function 5
3x+1 is positive and decreasing for x ∈ [1,∞).

∫∞
1

5
3x−1 dx = limt→∞ ∫t

1
5

3x−1 dx

Using u-substitution to evaluate the integral, we set u = 3x − 1 and find that
du = 3dx → dx = du

3 . Substituting,
∫t
1

5
3x−1 dx =

∫x=t
x=1

5
3
1
u du. Evaluating the in-

tegral,
∫x=t
x=1

5
3
1
u du = 5

3 lnu|x=t
x=1 = 5

3 ln 3x+ 1|t1. Substituting this back into the limit,∫∞
1

5
3x−1 dx = limt→∞ 5

3 ln 3x+ 1|t1 = limt→∞[ 53 ln 3t+ 1] − 5
3 ln 4 = ∞ − 5

3 ln 4 = ∞.
Therefore, the integral

∫∞
1

5
3x−1 dx is divergent and so is the series

∑∞
n=1

5
3n−1 .

3. The function x
3x2+1

is positive and decreasing for x ∈ [1,∞).
∫∞
1

x
3x2+1

dx = limt→∞ ∫t
1

x
3x2+1

dx.
Applying the substitution u = 3x2+1 and du

6 = x dx, we see that limt→∞ ∫t
1

x
3x2+1

dx =

limt→∞ ∫x=t
x=1

1
6u du = limt→∞ 1

6 lnu|x=t
x=1 = limt→∞ 1

6 ln 3x2 + 1|t1 = limt→∞ [ 16 ln 3t2 + 1
]
−

1
6 ln 4 = ∞. Therefore, the integral

∫∞
1

x
3x2+1

dx is divergent, and so is the series∑∞
n=1

n
3n2+1

.

Answer to Exercise 14 (on page 42)

1. If p ≤ 0, then limn→∞ 1
np 6= 0, and the series fails the Test for Divergence. Therefore,

a p-series is divergent if p ≤ 0.

2. If p > 0, then f(x) = 1
xp is continuous, positive, and decreasing on the interval

x ∈ [1,∞), and we can apply the integral test. So, we want to know, when is
∫∞
1

1
xp dx
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convergent? When p = 1,
∫∞
1

1
xp dx = ln x|x=∞

x=1 = limt→∞ ln t − ln 1 = ∞ and the
integral and p-series are both divergent.

3. What about when 0 < p < 1? In this case, the integral
∫∞
1

1
xp dx = limt→∞ ∫t

1 x
−p dx =

limt→∞ 1
1−px

1−p|x=t
x=1 = limt→∞ 1

1−p
1

xp−1 =
(

1
1−p

) [
limt→∞ ( 1

tp−1

)
− 1
]
. When 0 < p <

1, then 1 − p > 0 is positive and limt→∞ 1
tp−1 = limt→∞ t1−p = ∞ and the integral

diverges. Therefore, p-series are divergent for 0 < p < 1.

4. When p > 1, then
∫∞
1

1
xp dx =

(
1

1−p

) [
limt→∞ ( 1

tp−1

)
− 1
]
. When p > 1, p−1 > 0 and

limt→∞ 1
tp−1 = 0. Therefore,

∫∞
1

1
xp dx converges to 1

p−1 when p > 1, and therefore
the p-series is convergent when p > 1.

Answer to Exercise 15 (on page 45)

1. s10 =
1
14

+ 1
24

+ · · ·+ 1
104

≈ 1.082037.

2. R10 ≤
∫∞
10

1
x4

dx = −1
3x3

|∞x=10 = limx→∞ −1
3x3

− −1
3·103 = 1

3000 = 0.000333. Therefore, the
error is less than 0.000333.

3. Given s10 ≈ 1.082037, we can say that 1.082037 +
∫∞
n+1

1
x4

dx ≤ s ≤ 1.082037 +∫∞
n

1
x4

dx. Using a calculator to evaluate each integral, we see that: 1.082037 +
0.000250 ≤ s ≤ 1.082037 + 0.000333 and therefore the sum is between 1.082287
and 1.082370.

4. Writing the actual value as a decimal, π4

90 ≈ 1.082323, which is in the estimate win-
dow from the previous part.

5. We are looking for an n such that
∫∞
n

1
x4

dx ≤ 0.00001. limx→∞ −1
3x3

− −1
3n3 = 1

3n3 ≤
0.00001. 100, 000 ≤ 3n3. 33, 333.33 ≤ n3. 32.183 ≤ n. Since n must be an integer,
n = 33 gives Rn ≤ 0.00001.

Answer to Exercise 16 (on page 49)

1. This is similar to
∑∞

n=1
1
n , which is divergent. Unfortunately, 1

n > 1√
n2+1

, so we can’t
use the direct comparison test. We will try the limit comparison test:

lim
n→∞

(
1√

n2+1
1
n

)
= lim

n→∞
(

1√
n2 + 1

· n
1

)
= lim

n→∞ n√
n2 + 1

= lim
n→∞ 1√

1+ 1/n2
=

1

1+ 0
= 1 > 0

Therefore, since
∑∞

n=1
1
n diverges, so does

∑∞
n=1

1√
n2+1

.
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2. This series is similar to the convergent geometric series
∑∞

n=1

(
9
10

)n. Given that:(
9

10

)
=

9n

10n
<

9n

3+ 10n

Since 9n

3+10n <
(

9
10

)n and
∑∞

n=1

(
9
10

)n is convergent, by the direct comparison test,∑∞
n=1

9n

3+10n is also convergent.

3. We can compare this to the convergent p-series
∑∞

n=1
1
n2 . Noting that sin2 n ≤ 1:

n sin2 n

1+ n3
<

n sin2 n

n3
≤ n

n3
=

1

n2

Because n sin2 n
1+n3 ≤ 1

n2 for all n ≥ 1 and
∑∞

n=1
1
n2 is convergent, we can state by the

direct comparison test that
∑∞

n=1
n sin2 n
1+n3 is also convergent.

Answer to Exercise 17 (on page 50)

We can write the series as
∑∞

n=1
cosn
n2 . Since n is real, we know that n2 > 0 and we

can say that
∑∞

n=1

∣∣ cosn
n2

∣∣ = ∑∞
n=1

| cosn|
n2 . Additionally, | cosn| ≤ 1 for all n, and there-

fore | cosn|
n2 ≤ 1

n2 . We know the series
∑∞

n=1
1
n2 is convergent. And since we have shown

that
∑∞

n=1
| cosn|
n2 ≤

∑∞
n=1

1
n2 , by the comparison test

∑∞
n=1

| cosn|
n2 is convergent. Therefore,∑∞

n=1
cosn
n2 is absolutely convergent and therefore convergent.

Answer to Exercise 18 (on page 51)

1. Conditionally Convergent.
∑∞

n=1

∣∣∣ (−1)n

3n+2

∣∣∣ = ∑∞
n=1

1
3n+2 Applying the integral test to

this sum:
∫∞
1

1
3x+2 dx = limt→∞ ∫t

1
1

3x+2 dx =
[
1
3 ln 3x+ 2

]t
x=1

= limt→∞ [ln 3x+ 2] −

ln 3(1) − 2 = ∞− 0 = ∞. Since
∫∞
1

1
3x+2 dx is divergent,

∑∞
n=1

1
3n+2 is divergent, and∑∞

n=1
(−1)n

3n+2 is conditionally convergent.

2. Absolutely Convergent.
∑∞

n=1

∣∣ sinn
4n

∣∣ ≤
∑∞

n=1
1
4n . Applying the integral test to∑∞

n=1
1
4n :

∫∞
1

1
4x dx = limt→∞ −1

4x ln 4 |
t
x=1 = limt→∞ [ −1

4t ln 4

]
− −1

41 ln 4
= 0 + 1

4 ln 4 = 1
4 ln 4 .

Since
∫∞
1

1
4x dx is convergent, the series

∑∞
n=1

1
4n is also convergent. And since∑∞

n=1

∣∣ sinn
4n

∣∣ ≤ ∑∞
n=1

1
4n ,

∑∞
n=1

∣∣ sinn
4n

∣∣ is also convergent, which shows that
∑∞

n=1
sinn
4n

is absolutely convergent.

3. Conditionally Convergent. We are asking if the series
∑∞

n=1

∣∣∣(−1)n−1 2n
n2+4

∣∣∣ is con-

vergent.
∑∞

n=1

∣∣∣(−1)n−1 2n
n2+4

∣∣∣ = ∑∞
n=1

2n
n2+4

We will apply the Limit Comparison test
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and compare this series to the known, divergent series
∑∞

n=1
1
n . limn→∞ 2n

n2+4
1
n

=

limn→∞ 2n2

n2+4
= 2 > 0. Therefore, by the Limit Comparison test,

∑∞
n=1

∣∣∣(−1)n−1 2n
n2+4

∣∣∣
is divergent AND

∑∞
n=1(−1)n−1 2n

n2+4
is conditionally convergent.

Answer to Exercise 19 (on page 52)

Series 1 and 3 converge

1. We apply the ratio test: limn→∞
∣∣∣∣∣ 8n+1

(n+1)!
8n

n!

∣∣∣∣∣ = limn→∞ 8·8n
(n+1)(n!) ·

n!
8n = limn→∞ 8

n+1 = 0.

Therefore, the series converges.

2. We apply the ratio test: limn→∞
∣∣∣∣∣

(n+1)!

(n+1)100

n!

n100

∣∣∣∣∣ = limn→∞ (n+1)n!
(n+1)100

·n100

n! = limn→∞ ( n
n+1

)100·
(n+ 1) = limn→∞ n100

(n+1)99
= ∞. Therefore, the series diverges.

3. We apply the comparison test: n+1
(n)(n+2)(n+3) =

n
(n)(n+2)(n+3)+

1
(n)(n+2)(n+3) =

1
(n+2)(n+3)+

1
(n)(n+2)(n+3) =

1
n2+5n+6

+ 1
n3+5n2+6n

≤ 1
n2 + 1

n3 . The series
∑∞

n=1
1
n2 and

∑∞
n=1

1
n3 are

both convergent, because they are p-series with p > 1. Having established that∑∞
n=1

n+1
(n)(n+2)(n+3) ≤

∑∞
n=1

1
n2 +

1
n3 and that

∑∞
n=1

1
n2 +

1
n3 converges, by the compar-

ison test we can state that
∑∞

n=1
n+1

(n)(n+2)(n+3) converges.

Answer to Exercise 20 (on page 53)

1. This is not necessarily true. For a convergent series, the result of the ratio test is
L < 1, so the limit could be 6= 0.

2. This is not necessarily true. Consider the geometric series
∑∞

n=1 2(
1
2)

n−1. This series
is convergent because the common ratio is less than one, but the first term is 2( 12)

0 =
2 > 1.

3. This is not necessarily true. Again, consider the geometric series
∑∞

n=1 2(
1
2)

n−1,
which converges to 4 6= 0.

4. This is not necessarily true. Consider the p-series
∑∞

n=1
1
n4 . Then the series

∑∞
n=1 n

1
n4 =∑∞

n=1
1
n3 is convergent.

5. This must be true. By the comparison test,
∑∞

n=1
an
n ≤

∑∞
n=1 an. Since

∑∞
n=1 an

converges, so much
∑∞

n=1 nan.
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Answer to Exercise 21 (on page 54)

1. lim∞
n=1

n

√∣∣∣( 3n2+1
n2−4

)n∣∣∣ = lim∞
n=1

3n2+1
n2−4

= 3 > 1. Therefore, the series
∑∞

n=1

(
3n2+1
n2−4

)n
is

divergent.

2. limn→∞ n

√∣∣∣ (−1)n

(lnn)n

∣∣∣ = limn→∞ n

√
1

(lnn)n = limn→∞ 1
lnn = 1∞ = 0 < 1. Therefore, the

series
∑∞

n=1
(−1)n

(lnn)n is convergent.

3. limn→∞ n

√∣∣∣(1+ 1
n

)n2
∣∣∣ = limn→∞ (1+ 1

n

)n
= e > 1. Therefore,

∑∞
n=1

(
1+ 1

n

)n2

is
divergent.

Answer to Exercise 22 (on page 56)

1. Divergent. Since there is a constant to the nth power and an algebraic function of
n, we will try the Ratio Test. limn→∞ ∣∣∣an+1

an

∣∣∣ = limn→∞ en+1

(n+1)2
· n2

en = limn→∞ en·e
en ·(

n
n+1

)2
= limn→∞ e ·

(
n

n+1

)2
= e · 12 = e > 1. Therefore,

∑∞
n=1

en

n2 is divergent.

2. Convergent. Since there is a factorial, we will try the Ratio Test. limn→∞ ∣∣∣an+1

an

∣∣∣ =
limn→∞ 3n+1(n+1)2

(n+1)! · n!
3nn2 = limn→∞ 3·3n

3n · n!
(n+1)n! ·

(
n+1
n

)2
= limn→∞ 3(n+1)2

(n+1)n2 = limn→∞ 3(n+1)
n2 =

0 < 1. Therefore, the series
∑∞

n=1
3nn2

n! is convergent.

3. Divergent. Since
∫∞
2

1

x
√
ln x

dx can be integrated, we will apply the integral test.∫∞
2

1

x
√
ln x

dx = limt→∞ ∫t
2

1

x
√
ln x

dx. Setting u = ln x, then du = dx
x and 1

x
√
ln x

dx =
1√
u
du. Thenwe can say that

∫∞
2

1

x
√
ln x

dx = limt→∞ ∫x=t
x=2

1√
u
du = limt→∞ (−1

2

)√
u|x=t

x=2 =

limt→∞ (−1
2

)√
ln x

t

2 =
(
−1
2

)
limt→∞√

ln t −
(
−1
2

)√
ln 2 = ∞. Since the integral di-

verges, so does the series.

4. Convergent. Since this series has terms to the nth power, we will try the Root Test.

limn→∞ n

√∣∣∣( n
n+1

)n2
∣∣∣ = limn→∞ n

√(
n

n+1

)n+2
= limn→∞ ( n

n+1

)n2

n = limn→∞ ( n
n+1

)n
=

limn→∞
(

1

1+ 1
n

)n

= 1

limn→∞(
1+ 1

n

)n = 1
e < 1 Therefore, by the root test, the series is

convergent.

5. Convergent. This series also has terms raised to the nth power, we will try the Root

Test again. limn→∞ n

√∣∣∣( n
√
2− 1

)n∣∣∣ = limn→∞ n

√(
n
√
2− 1

)n
= limn→∞ ( n

√
2− 1

)n/n
=

limn→∞ ( n
√
2− 1

)
= limn→∞ 21/n − 1 = 1 − 1 = 0 < 1. Therefore, the series con-
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verges.
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