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Chapter 1

u-Substitution

U-Substitution, also known as the method of substitution, is a technique used to simplify
the process of finding antiderivatives and integrals of complicated functions. The method
is similar to the chain rule for differentiation in reverse.

Suppose we have an integral of the form:

∫
f(g(x)) · g ′(x)dx (1.1)

The u-substitution method suggests letting a new variable u be equal to the inside function
g(x), i.e.,

u = g(x) (1.2)

Next, the differential of u, du, is given by:

du = g ′(x)dx (1.3)

Substituting u and du back into the integral gives us a simpler integral:

∫
f(u)du (1.4)

This new integral can often be simpler to evaluate. Once the antiderivative of f(u) is
found, we can substitute u = g(x) back into the antiderivative to get the antiderivative of
the original function in terms of x.

The method of u-substitution is a powerful tool for evaluating integrals, especially when
combined with other techniques like integration by parts, partial fractions, and trigono-
metric substitutions.

Example: Find
∫
2x2 cos

(
x3 − 3

)
dx.

Solution: Integrating cos
(
x3 − 3

)
isn’t so straightforward, so let’s try the substitution

3
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u = x3 − 3. Then:
du = 3x2 dx

We don’t have 3x2 in the integral, but we do have 2x2:

2

3
du = 2x2 dx

Substituting: ∫
2x2 cos

(
x3 − 3

)
dx =

∫
2

3
cos(u)du

=
2

3
sin (u) + C

Now that we have the antiderivative of f(u), we can back-substitute in for u:

2

3
sin (u) + C =

2

3
sin

(
x3 − 3

)
+ C

We can check our answer by taking its derivative: we should get the original integrand
back:

d

dx

[
2

3
sin

(
x3 − 3

)
+ C

]
=

2

3
cos

(
x3 − 3

)
·
[
d

dx

(
x3 − 3

)]
=

2

3
cos

(
x3 − 3

)
·
(
3x2

)
= 2x2 cos

(
x3 − 3

)
Sometimes, the right substitution takes a little thinking. Consider the following example:

Example: Find
∫√

x2 − 1 x5 dx.

Solution: We can guess that u = x2−1 could be an appropriate substitution, as that is what
is under the square root. What to do with x5? First, let’s look at how the u-substitution
for x2 − 1 works out:

u = x2 − 1

du = 2x dx

du

2
= x dx

Then we will need to use one of the x’s in x5 for the square root u-substitution. What can
we do with the remaining x4? Well, we see that if u = x2−1, then u+1 = x2 and therefore
(u+ 1)2 = x4. Substituting this all in:∫ √

x2 − 1 x5 dx =

∫
x4
√
x2 − 1 xdx
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=
1

2

∫
(u+ 1)2

√
udu

We can expand this to find the antiderivative:

=
1

2

∫ (
u2 + 2u+ 1

)
u1/2 du =

1

2

∫
u5/2 + 2u3/2 + u1/2 du

=
1

2

[
2

7
u7/2 +

4

5
u5/2 +

2

3
u3/2

]
+ C

=
1

7
u7/2 +

2

5
u5/2 +

1

3
u3/2 + C

=
1

7

(
x2 − 1

)7/2
+

2

5

(
x2 − 1

)5/2
+

1

3

(
x2 − 1

)3/2
+ C
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Exercise 1 Indefinite Integrals and u-substitution

.Use u-substitution to evaluate the fol-
lowing indefinite integrals. Confirm your
answer by taking the derivative of the re-
sult.

1.
∫
sin x

√
1+ cos xdx

2.
∫ cos (π/x)

x2
dx

3.
∫
2x2

(
9− x3

)2/3
dx

4.
∫
3x2

√
1+ xdx

5.
∫

3x2

x3−1
dx

Answer on Page 41

Working Space

1.1 The Substitution Rule for Definite Integrals

How to we use u-substitution for definite integrals? We will apply the fundamental theo-
rem of calculus to answer this question. We define f and F such that F is the antiderivative
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of f. Then: ∫b
a

f(g(x)) · g ′(x)dx = F(g(x))|ba = F(g(b)) − F(g(a))

This represents the method of finding the indefinite antiderivative and evaluating from
the original limits of integration.

We can also see that:

F(g(b)) − F(g(a)) = F(u)|
g(b)
g(a) =

∫g(b)
g(a)

f(u)du

Therefore, if g ′ is continuous on [a, b] and f is continuous on the range of u = g(x), then:∫b
a

f(g(x)) · g ′(x)dx =

∫g(b)
g(a)

f(u)du

This represents changing the limits of integration into the new variable, u, then evaluating
the integral. While the second method is preferable, both methods yield the same answer.

Example: Evaluate
∫5
0

√
3x+ 1 dx using both methods outlined above.

Solution: We start with the first method. We will use the substitution u = 3x + 1, and
therefore du/3 = dx: ∫ 5

0

√
3x+ 3 dx =

1

3

∫x=5

x=0

√
udu

(We write the limits as x = · · · to remind us the limits are for x, not u.)

1

3

∫x=5

x=0

√
udu =

1

3

[
2

3
u3/2

]x=5

x=0

Now we substitute back in for u and evaluate:

2

9
(3x+ 1)3/2 |50 =

2

9
(16)3/2 −

2

9
(1)3/2

=
2

9
(64− 1) =

2 · 63
9

= 14

Let’s compare this to the second, preferred method. We already know the u-substitution
we’ll make, so next we need to find g(0) and g(5) (recall that we choose u such that
u = g(x)):

g(x) = 3x+ 1
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g(0) = 1

g(5) = 16

Now we can make our substitution and change the limits of integration:∫ 5
0

√
3x+ 1 dx =

1

3

∫ 16
1

√
udu

=
1

3

[
2

3
u3/2

]16
1

=
2

9

[
163/2 − 13/2

]
=

2

9
(64− 1) = 14

With the second method, we get the same answer in fewer steps.
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Exercise 2 Definite Integrals and u-substitution

.Use u-substitution to evaluate the fol-
lowing definite integrals.

1.
∫π/2
0 cos x sin (sin x)dx

2.
∫13
0

1
3
√

(1+2x)2
dx

3.
∫2
1
e1/x

x2
dx

4.
∫π/6
0

sin x
cos2 x dx

5.
∫4
0

x√
1+2x

dx

Answer on Page 43

Working Space





Chapter 2

Calculus with Polar Coordinates

We have been working in Cartesian coordinates, which are rectangular, with x repre-
senting the horizontal position and y representing the vertical position. Another way to
represent a position in 2D space is with polar coordinates. In this coordinate system, the
first number and dependent variable is r, which represents how far the point is from the
origin. The second number is θ, which represents the degrees of rotation from the the x

axis (see figure ??).

0

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

0 1 2

(1.5, π3 )

(1, 0)

(2,− 5π
6 )

Figure 2.1: Polar coordinates give a degree of rotation, θ, and a distance from the origin,
r, in the form of (r, θ)

2.1 Derivatives of Polar Functions

Consider the cardioid r = 2 + sin θ (see figure ??). What is the slope of the line tangent
to the curve at θ = π

2 ?

From a visual inspection, we can guess that the slope of the tangent line is zero. Let’s
prove this mathematically:

First, recall that to convert polar coordinates to Cartesian coordinates, we can use the

11
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0

π
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π
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22π
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6

π

7π
6

4π
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2

5π
3

11π
6

0 1 2

Figure 2.2: r = 2+ sin θ

trigonometric identities:
x = r cos θ

y = r sin θ

So, we can write the parametric equation:

x = [2+ sin θ] cos θ

y = [2+ sin θ] sin θ

Recall from parametric equations that we can use implicit differentiation to find dy
dx :

dy

dx
=

dy
dθ
dx
dθ

Finding dy
dθ and dx

dθ :

dy

dθ
=

d

dθ

(
2 sin θ+ sin2 θ

)
= 2 cos θ+ 2 sin θ cos θ

dx

dθ
=

d

dθ
(2 cos θ+ sin θ cos θ) = cos2 θ− sin2 θ− 2 sin θ
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Substituting θ = π
2 , we find that:

dy

dθ
= 2(0) + 2(1)(0) = 0

dx

dθ
= (0)2 − (1)2 − 2(1) = −3

Therefore,
dy

dx
=

0

−3
= 0

Which is the result we expected from examining the graph of r = 2+ sin θ.

So, in general for polar equations,

Tangent to a Polar Function

For a polar function, r = f(θ), the slope of a tangent line is given by:

dy

dx
=

dy/dθ

dx/dθ

Where y = r · sin θ and x = r · cos θ
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Exercise 3

.[This problem was originally presented
as a no-calculator, multiple-choice ques-
tion on the 2012 AP Calculus BC exam.]
What is the slope of the line tangent to
the polar curve r = 1+ 2 sin θ at θ = 0?

Answer on Page 44

Working Space
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Exercise 4

.Find the slope of the tangent line to the
given polar curve at the value of θ speci-
fied. Use this to write an equation for the
tangent line in Cartesian coordinates.

1. r = 2
3 cos θ, θ = π

6

2. r = 1
2θ , θ = π

2

3. r = 2+ 3 cos θ, θ = 2π
3

Answer on Page 44

Working Space



16 Chapter 2. CALCULUS WITH POLAR COORDINATES

2.2 Integrals of Polar Functions

Similar to Cartesian functions, an integral of a polar function tells us the area within the
function. We say ”within” as opposed to ”under” because a polar function describes how
far from the origin the graph is based on the angle. Consider the graph of r = 2 sin θ

(figure 2.3). Geometrically, we expect the area inside the curve to be πr2 = π. However,
this is not the result we get from directly integrating the function (we only integrate from
θ = 0 to θ = π because the circle is complete when θ reaches π):∫π

0

2 sin θdθ = −2 cos θ|θ=π
θ=0

= −2 [cosπ− cos 0] = −2 [−1− 1] = 4 6= π

0

π
6

π
3

π
22π

3

5π
6

π
0 1 2

r = 1

Figure 2.3: The graph of r = 2 sin θ is a circle of radius 1 centered at (1, π2 )

Clearlym something else is happening here. We can just take the integral of a Cartesian
function because the area of a rectangle is the base times the height. When integrating
Cartesian functions, the base is given by the dx and the height by the function, f(x). In
polar coordinates, the integral sweeps across a θ interval, making a wedge, not a rectangle.

Let us consider a generic polar function, shown in figure 2.4

Suppose we are interested in a specific region, bounded by a ≤ θ ≤ b (see figure 2.5).

We can divide the region into many small sectors. Then, each small sector has a central
angle ∆θ and a radius r(θ∗i ), where θi−1 < θ∗i < θi (see figure 2.6).

What is the area of the ith sector? Recall from the chapter on circles that the area of a
sector with angle θ and length r is A = 1

2r
2θ. Substituting, we see the area of the ith sector
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x

y

(r, θ)

θ

r

Figure 2.4: A generic polar function

x

y

θ2 = b

θ1 = a

Figure 2.5: A generic polar with a region from θ = a to θ = b highlighted

x

y

θi
θi−1

r(θ∗i )

∆θ

Figure 2.6: A single sector from θi−1 to θi
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is:
Ai =

1

2
[r(θ∗i )]

2 dθ

Therefore, the total area of the whole sector from θ = a to θ = b is the limit as the number
of sectors approaches infinity of sum of the areas of all the small sectors:

A = lim
n→∞

n∑
i=1

1

2
[r(θ∗i )]

2∆θ

Does this look familiar? It is the definition of an integral!

lim
n→∞

n∑
i=1

1

2
[r(θ∗i )]

2∆θ =

∫b
a

1

2
[r(θ)]2 dθ

Area of a Polar Function
The area of a polar function is given by the integral∫b

a

1

2
r2 dθ

Where r is a function of θ.

We can check this with the example from the beginning of the section. Recall that the
polar function r = 2 sin θ graphs a circle with a radius of 1. Therefore, we expect the area
enclosed by the graph of r = 2 sin θ from θ = 0 to θ = π to be π:

A =
1

2

∫π
0

[2 sin θ]2 dθ

A = 2

∫π
0

sin2 θdθ = 2

∫π
0

[
1− cos 2θ

2

]
dθ

A =

∫π
0

[1− cos 2θ] dθ =

[
θ−

1

2
sin 2θ

]θ=π

θ=0

A = [π− 0] − [0− 0] = π

Which is the expected result, confirming our formula for the area within a polar function.

Example: The graph of r = 3 sin 2θ is shown below. What is the total area enclosed by
the graph?
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0

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

0 1 2 3

Figure 2.7: r = 3 sin 2θ

Solution: Since each lobe is symmetric to the others, we can find the area of one lobe and
multiply it by four. To find the area of one lobe, we need to determine an interval for θ
that defines one lobe. You can imagine each lobe being draw out from the center and then
back in. So, we will find where r = 0:

0 = 3 sin 2θ

sin 2θ = 0

2θ = nπ

θ =
nπ

2

Taking the first two solutions, θ = 0 and θ = π
2 , as our limits of integration, we see that

the area of one lobe is:

Alobe =
1

2

∫π/2
0

[3 sin 2θ]2 dθ

Alobe =
9

2

∫π/2
0

sin2 2θdθ

Applying the half-angle formula sin2 θ = 1−cos 2θ
2 , we see that:

Alobe =
9

2

∫π/2
0

1− cos 4θ
2

dθ =
9

4

∫π/2
0

1− cos 4θdθ
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=
9

4

[
θ−

1

4
sin 4θ

]θ=π/2

θ=0

=
9

4

(π
2
− 0

)
−

9

4

(
1

4

)
(sin 2π− sin 0)

=
9π

8
−

9

16
(0) =

9π

8

Since the area of one lobe is 9π
8 , the area of all four lobes is 9π

2 .

2.2.1 Area between polar curves

Consider the circle r = 6 sin θ and the cardioid r = 2 + 2 sin θ. How can we find the area
that lies inside the circle, but outside the cardioid (see figure 2.8)? First, let’s find where
these curves intersect. This will determine the limits of any integrals we take.

6 sin θ = 2+ 2 sin θ

3 sin θ = 1 = sin θ

2 sin θ = 1

sin θ =
1

2

θ =
π

6
,
5π

6

0

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

0 2 4 6

Figure 2.8: The area inside r = 6 sin θ and outside of r = 2+ 2 sin θ is highlighted

Recall that for Cartesian functions, to find the area between two curves, we subtract the
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area under the lower curve from the total area under the higher curve. In polar coor-
dinates, we want to subtract the area in the inner curve from the total area in the outer
curve. In this case, the outer curve is r = 6 sin θ and the inner curve is r = 2+ 2 sin θ. We
have already found our limits of integration (π6 ≤ θ ≤ 5π

6 ), so we set up and evaluate our
integral:

Abetween =
1

2

∫ 5π/6
π/6

[4 sin θ]2 dθ−
1

2

∫ 5π/6
π/6

[2+ 2 sin θ]2 dθ

=
1

2

∫ 5π/6
π/6

[
16sin2θ− 4− 8 sin θ− 4 sin2 θ

]
dθ

=

∫ 5π/6
π/6

[
6 sin2 θ− 4 sin θ− 2

]
dθ

=

∫ 5π/6
π/6

[3 (1− cos 2θ) − 4 sin θ− 2] dθ

=

∫ 5π/6
π/6

[1− 3 cos 2θ− 4 sin θ] dθ

=

[
θ−

3

2
sin 2θ+ 4 cos θ

]θ=5π/6

θ=π/6

=

[
5π

6
−

π

6

]
−

[
3

2
sin

(
2 · 5π

6

)
−

3

2
sin

(
2 · π

6

)]
+

[
4 cos 5π

6
− 4 cos π

6

]

=
4π

6
−

[
3

2
·−

√
3

2
−

3

2
·
√
3

2

]
+

[
4 ·−

√
3

2
− 4 ·

√
3

2

]

=
2π

3
+

3
√
3

2
− 4

√
3 =

2π

3
+

3
√
3− 8

√
3

2
=

2π

3
−

5
√
3

2

(Note: Because these polar functions are symmetric about the y-axis, we could have also
taken the integral from θ = π

6 to θ = π
2 and doubled the result. We leave it as an exercise

for the student to show this works.)
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Exercise 5

.[This question was originally presented
as a multiple-choice, calculator- allowed
problem on the 2012 APCalculus BC exam.]
The figure below shows the graphs of
polar curves r = 2 cos 3θ and r = 2. What
is the sum of the areas of the shaded re-
gions to three decimal places?

0

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

0 1 2

Answer on Page 46

Working Space
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Exercise 6

.Find the area of the region bounded by
the given curve and angles.

1. r = eθ/2, π/4 ≤ θ ≤ π/2

2. r = 2 sin θ+ cos 2θ, 0 ≤ θ ≤ π

3. r = 4+ 3 sin θ, −π/2 ≤ θ ≤ π/2

Answer on Page 46

Working Space
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Exercise 7

.Find the area of the region that lies be-
tween the curves r = 4 sin θ and r =
2 cos θ. A graph is shown below.
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π
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π
3

π
22π

3
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6

π
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6

4π
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5π
3

11π
6

0 1 2 3 4

Answer on Page 47

Working Space



Chapter 3

Differential Equations

Differential equations are equations involving an unknown function and its derivatives.
They play a crucial role in mathematics, physics, engineering, economics, and other dis-
ciplines due to their ability to describe change over time or in response to changing con-
ditions.

3.1 Ordinary Differential Equations

An ordinary differential equation (ODE) involves a function of a single independent vari-
able and its derivatives. The order of an ODE is determined by the order of the highest
derivative present in the equation. An example of a first-order ODE is:

dy

dx
+ y = x (3.1)

Here, y is the function of the independent variable x, and dy
dx represents its first derivative.

A real-world example of the application of differential equations is an oscillating spring
(or any harmonic motion). When a spring is stretched, the restoring force (the force
pulling or pushing it back to its neutral position) is proportional to the distance by which
the spring has been stretched (see figure ??). Mathematically, we say that

restoring force = −kx

where k is the positive spring constant (the stiffer a spring, the greater k).

x = 0

∆x < 0

∆x = 0

∆x > 0

Figure 3.1: A spring can have a positive or negative displacement

Recall that Newton’s Second Law tells us that force is equal to mass times acceleration, and

25
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that acceleration is the second derivative of position. We can then write the differential
equation:

m
d2x

dt2
= −kx

This is called a second-order differential equation, because it involves second-order deriva-
tives. The order of a differential equation is the same as the highest order of derivative in
the equation. We can further rewrite the equation to isolate the second derivative:

d2x

dt2
= −

k

m
x

In everyday language, this is saying that the second derivative is proportional to the orig-
inal function, just negative. There are two trigonometric functions that have this property,
take a second to see if you remember and write down your guess.

The sine and cosine functions both have the property d2x
dt2

∝ −x(t) (recall that ∝ means
“proportional to”).

Example: Assuming x(t) is a sine function, solve the second-order differential equation
d2x
dt2

= −k
m x.

Solution: Let x(t) = sinCt. Then dx
dt = C cosCt and d2x

dt2
= −C2 sin t. This implies

that C2 = k
m and C = ±

√
k
m . So, a solution to the differential equation d2x

dt2
= −k

m x is

x(t) = sin
√

k
mt.

3.1.1 Population Growth

Another real-world application of differential equations is modeling population growth.
Under ideal conditions (unlimited food, no predators, disease-free, etc.), the population
of a species grows at a rate proportional to the current population size. We can identify
two variables:

t = time (the independent variable)

P = the number pf individuals in the population (the dependent variable)

So, what is the rate of growth? Recall that a rate is change over time. In that case, the rate
of growth is given by dP

dt . If the rate of growth is proportional to the population, then we
can write a first-order differential equation:

dP

dt
= kP
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where k is a proportionality constant. This is called natural growth or logarithmic
growth. To find a solution, we must answer the question: What function’s derivative
is a constant multiple of itself? Recall that we have seen that the derivative of the expo-
nential function ekt is kekt. Setting P(t) = Cekt (where C is some constant), we see that
the derivative is dP

dt = kCekt = kP(t) (see figure 3.2). You can determine C from initial
conditions.

t

P

Figure 3.2: Several solutions to dP
dt = kP

Example: Suppose a population of bacteria has an initial population of 100 bacteria. If
the bacteria’s growth rate is given by dP

dt = 2P (where t is in hours), how many bacteria
are present after 4 hours?

Solution: We have seen that the solution to dP
dt = 2P is P(t) = Ce2t. We can then use the

given initial condition to find C:

P(0) = 100 = Ce2·0 = C · 1 = C

Which means that the complete solution is:

P(t) = 100e2t

To answer the question, we need to find P(4):

P(4) = 100e2·4 = 100e8 ≈ 298096

As stated above, this model works well for populations under specific, ideal conditions.
However, there are very few environments in which these conditions are met. Real ani-
mals suffer from disease, are hunted by predators, and have limited food supplies. Most
environments have a maximum number of animals they can support, which ecologists
call a carrying capacity. Let us call the carrying capacity of an environment M. So, the
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population growth can be modeled by the logistic differential equation:

dP

dt
= kP

(
1−

P

M

)

This is called a logistic differential growth model. Notice that if P is small, then dP
dt ≈ kP.

This makes sense: If the population is very small compared to the carrying capacity, the
conditions are nearly ideal, and so growth should be nearly ideal too. On the other hand,
if the population ever goes above the carrying capacity, the dP

dt < 0 and the population
will decrease back below the carrying capacity (see figure 3.3). Notice that if the initial
population is P0 = M, then dP

dt = kP (1− 1) = 0 and the population is stable at P(t) =
M. We call this an equilibrium solution. Can you logically find the other equilibrium
solution?

If there are no animals to begin with, then there are none to reproduce, and P(t) = 0.
This is the other equilibrium solution. Notice that when the population is in equilibrium,
then the rate of change is zero. Mathematically, to find equilibrium solutions, we can set
dP
dt = 0 and solve for P.

M

t

P

Figure 3.3: Several solutions to dP
dt = kP

(
1− P

M

)
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Exercise 8

.A population is modeled by the differ-
ential equation dP

dt = 1.2P
(
1− P

4200

)
.

1. What is the carrying capacity of the
environment?

2. For what values of P is the popu-
lation increasing?

3. For what values of P is the popu-
lation decreasing?

4. What are the equilibrium solutions?

Answer on Page 48

Working Space

Exercise 9

.[This problem was originally presented
as a calculator-allowed, free response ques-
tion on the 2012 AP Calculus BC exam.]
Let k be a positive constant. Which of
the following is a logistic differential equa-
tion?
(a) dy

dt = kt

(b) dy
dt = ky

(c) dy
dt = kt(1− t)

(d) dy
dt = ky(1− t)

(e) dy
dt = ky(1− y)

Answer on Page 49

Working Space
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3.1.2 Separable Differential Equations

Sometimes, differential equations can be explicitly solved. A first-order differential equa-
tion is separable if dy

dx can be written as a function of x times a function of y. Symbolically,
a differential equation is separable if it takes the form

dy

dx
= g(x)f(y)

The equations may be solvable by separating the x from the y and integrating each side.
For our generic form, we can separate the variables thusly if f(y) 6= 0:

dy

dx

1

f(y)
= g(x)

1

f(y)
dy = g(x)dx

Integrating both sides: ∫
1

f(y)
dy =

∫
g(x)dx

.

Let’s look at the example dy
dx = x2

y . We can separate the variables by multiplying both
sides by ydx:

ydy = x2dx

Integrating both sides: ∫
ydy =

∫
x2 dx

1

2
y2 + C1 =

1

3
x3 + C2

We can combine the constants by defining C = C2 − C1. Making this substitution and
solving for y, we find:

y2 =
2

3
x3 + 2C

y =

√
2

3
x3 + 2C

Noting that 2C is also a constant (which we will call K for convenience), we find the
general solution is

y =

√
2

3
x3 + K
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A graph showing the solution for several values of K is in figure 3.4.

−2 −1 1 2 3

1

2

3

4

x

y

Figure 3.4: Several possible solutions to dy
dx = x2

y

It is not always possible to solve for y explicitly in terms of x. The practice problem below
is an example of this.

Exercise 10

.Solve the differential equation dy
dx = 3x2

2y+siny .

Answer on Page 49

Working Space
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Exercise 11

.[This problem was originally presented
as a calculator-allowed, free response ques-
tion on the 2012 AP Calculus BC exam.]
The rate at which a baby bird gains mass
is proportional to the difference between
its adult mass and its current mass. At
time t = 0, when the bird is first weighed,
its mass is 20 grams. If B(t) is the mass
of the bird, in grams, at time t days after
it is first weighed, then

dB

dt
=

1

5
(100− B)

Let y = B(t) be the solution to the dif-
ferential equation with initial condition
B(0) = 20.

1. Is the bird gainingmass faster when
it masses 40 grams or when it masses
70 grams? Explain your reasoning.

2. Find d2B
dt2

in terms of B. Use it to
explain why the graph of B cannot
resemble the graph shown below.

3. Use separation of variables to find
y = B(t), the particular solution to
the differential equation with ini-
tial condition B(0) = 20.

20

100

time (days)

weight (grams)

Answer on Page 49

Working Space
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Exercise 12

.[This problem was originally presented
as a no-calculator, multiple-choice ques-
tion on the 2012 AP Calculus BC exam.]
If P(t) is the size of a population at time
t, which of the following differential equa-
tions describes linear growth in the size
of the population?
(a) dP

dt = 200

(b) dP
dt = 200t

(c) dP
dt = 100t2

(d) dP
dt = 200P

(e) dP
dt = 100P2

Answer on Page 49

Working Space

3.2 Partial Differential Equations

Partial differential equations (PDEs), on the other hand, involve a function of multiple
independent variables and their partial derivatives. An example of a PDE is the heat
equation, a second-order PDE:

∂u

∂t
= α

∂2u

∂x2
(3.2)

In this equation, u = u(x, t) is a function of the two independent variables x and t, ∂u
∂t is

the first partial derivative of u with respect to t, and ∂2u
∂x2

is the second partial derivative
of u with respect to x.
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Slope Fields

While separable differential equations are solvable, most differential equations are not
separable. In fact, it is impossible to obtain an explicit formula as a solution to most
differential equations. How do computers solve these, then? They start with a given
quantity (usually initial conditions) and perform many small calculations to estimate the
behavior of the solution. We can do this graphically with slope fields (also called direction
fields), which allow us to visualize the family of solutions to the differential equation.

4.1 Drawing Slope Fields

When a differential equation is in the form

y ′ = f(x, y)

we can use the coordinates (x, y) to determine the slope of a solution to the differential
equation at that coordinate. Take y ′ = x+ y as an example. According to this differential
equation, a solution that passes through the point (1, 1) would have a slope of 2. We can
represent this with a small tick of slope 2 at the (1, 1) (see figure 4.1).

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

Figure 4.1: A solution to y ′ = x+y that passes through (1, 1) will have a slope of 2 at that
point

Continuing, we want to choose coordinates that are easy to determine the slope. Notice
that y ′ = 0 when −x = y, so let’s go ahead and fill those ticks in (see figure 4.2):

We can repeat this process for all the coordinates shown, resulting in a slope field (see

35
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−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

Figure 4.2: Solutions to y ′ = x+ y that lie on the line y = −x will have a slope of 0.

figure 4.3).

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

Figure 4.3: Slope field of y ′ = x+ y

4.2 Sketching solutions on slope fields

If you are given an initial condition or a known point in the solution to the differential
equation, you can begin sketching a curve on the slope field. Start at the given point and
draw parallel to the nearby slopes. For example, suppose we know that particular solution
to y ′ = x + y passes through the point (1, 0). Begin by extending the dash at (1, 0) (see
figure 4.4), changing the slope of your sketched solution to be approximately parallel to
the nearby slopes (see figure 4.5).

While this method doesn’t yield an exact, formulaic solution to the differential equation, it
does allow us to visualize solutions and generally describe the behavior of any solutions.
Sketching solutions in this way is logically similar to Euler’s method for finding numerical
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−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

Figure 4.4: To begin sketching a solution to the differential equation, start at the point
given as part of the solution

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

Figure 4.5: To sketch a solution to the differential equation, draw a function parallel to the
nearby slopes that passes through the given point in the particular solution
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approximations of solutions to differential equations, which we will discuss more in the
next chapter.

4.3 Example: Application of Differential Equations to Electronics

Think back to the chapter on DC circuits. You learned that Ohm’s Law relates voltage
(electromotive force), current, and resistance for simple DC circuits:

V = IR

Simple resistors have a constant resistance, so once the voltage source (battery) is con-
nected, the current is constant. There are other electronic components, such as inductors
and capacitors, that behave differently. When current changes in an inductor, a voltage
drop is induced across the inductor. This is described by the differential equation:

V = −L
dI

dt

Where L is inductance, measured in henries (H), of the inductor. Consider, then, a circuit
consisting of a constant-voltage battery, a fixed resistor, and an inductor (shown in figure
4.6). Since Kirchoff’s Law states that the sum of the voltage drops across each component
must equal the voltage supplied by the battery, we can write a differential equation to
describe the circuit:

V = L
dI

dt
+ RI

Where the current, I, is a function of time, t.

V

switch

L

R

Figure 4.6: A simple circuit with a battery, resistor, inductor, and switch

Example: If the resistor is 12Ω, the inductance is 4H, and the battery supplies a constant
voltage of 60V :

1. Draw a slope field for the differential equation describing the current in the circuit.

2. Describe the expected behavior of the current over a long period of time.
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3. Identify any equilibrium solutions.

4. If the initial current at t = 0 is I(0) = 0, sketch the particular solution to the differ-
ential equation on the slope field.

Solution: Substituting the given values into the differential equation and rearranging to
isolate dI

dt , we get dI
dt = 15 − 3I. Notice that the current is not dependent on time. When

the slope is only dependent on the value of the function (as in this case), we call this
an autonomous differential equation. This means that the slope will be the same of all
values of t for a given I. The slope field is shown in figure 4.7.

0.5 1 1.5 2 2.5 3

5

t

I

Figure 4.7: Slope field for the differential equation dI
dt = 15− 3I

Examining the slope field, we see that the solutions tend towards I(t) = 5, which suggests
that over an extended period of time, the current will approach 5 amperes. Similarly,
if the initial current were 5 amperes, then the current would be constant at 5 amperes.
Therefore, I(t) = 5 is an equilibrium solution. A sketch of the solution with I(0) = 0 is
shown in figure 4.8.

4.4 Practice
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0.5 1 1.5 2 2.5 3

5

t

I

Figure 4.8: Slope field for the differential equation dI
dt = 15− 3I

Exercise 13

.Sketch the slope field for the differen-
tial equation y ′ = x+y2. Use your slope
field to sketch a solution that passes through
the point (0, 0).

Answer on Page 50

Working Space
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Answers to Exercises

Answer to Exercise 1 (on page 6)

1. Let u = 1+ cos x. Then du = − sin x dx and −du = sin x dx. Substituting:∫
sin x

√
1+ cos xdx =

∫
−
√
udu = −

2

3
u3/2 + C

= −
2

3
(1+ cos x)3/2 + C

Taking the derivative:

d

dx

[
−
2

3
(1+ cos x)3/2 + C

]
= −

2

3

[
d

dx
(1+ cos x)3/2 + d

dx
C

]

= −
2

3

[
3

2
(1+ cos x)1/2 · d

dx
(1+ cos x)

]
= −1

√
1+ cos x · (− sin x) = sin x

√
1+ cos x

2. Let u = π/x. Then du = (−π/x2)dx and −du/π = (1/x2)dx. Substituting:∫ cos (π/x)
x2

dx = −
1

π

∫
cosudu = −

1

π
sinu+ C = −

1

π
sin (π/x) + C

Taking the derivative:

d

dx

[
−
1

π
sin (π/x) + C

]
= −

1

π

[
d

dx
sin (π/x) +

d

dx
C

]

= −
1

π

[
cos (π/x) · d

dx

(π
x

)]
= −

1

π

[
cos (π/x) ·

(
−π

x2

)]
=

cos (π/x)
x2

3. Let u = 9− x3. Then du = −3x2 dx and − 2
3du = 2x2 dx. Substituting:∫

2x2
(
9− x3

)2/3
dx = −

2

3

∫
(u)2/3 du

= −
2

3

[
3

5
u5/3 + C

]
= −

2

5

(
9− x3

)5/3
+ C

41
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Taking the derivative:

d

dx

[
−
2

5

(
9− x3

)5/3
+ C

]
= −

2

5

[
d

dx

(
9− x3

)5/3
]
+

d

dx
C

= −
2

5

[
5

3

(
9− x3

)2/3
· d

dx

(
9− x3

)]
= −

2

3

(
9− x3

)2/3 (
−3x2

)
= 2x2

(
9− x3

)2/3

4. Let u = 1+x. Then du = dx. Additionally, u−1 = x and x2 = (u− 1)2. Substituting:∫
3x2

√
1+ xdx =

∫
3 (u− 1)2

√
udu = 3

∫ (
u2 − 2u+ 1

)√
udu

= 3

∫
u5/2 − 2u3/2 + u1/2 du = 3

[
2

7
u7/2 −

2 · 2
5

u5/2 +
2

3
u3/2 + C

]
=

6

7
u7/2 −

12

5
u5/2 + 2u3/2 + C

=
6

7
(1+ x)7/2 −

12

5
(1+ x)5/2 + 2 (1+ x)3/2 + C

Taking the derivative:

d

dx

[
6

7
(1+ x)7/2 −

12

5
(1+ x)5/2 + 2 (1+ x)3/2 + C

]

=
6

7

(
7

2
(1+ x)5/2

)
−

12

5

(
5

2
(1+ x)3/2

)
+ 2

(
3

2
(1+ x)1/2

)
= 3 (1+ x)5/2 − 6 (1+ x)3/2 + 3 (1+ x)1/2

=
[
3 (1+ x)2 − 6 (1+ x) + 3

]
(1+ x)1/2

=
[
3
(
1+ 2x+ x2

)
− 6− 6x+ 3

]√
1+ x

=
[
3+ 6x+ 3x2 − 6− 6x+ 3

]√
1+ x = 3x2

√
1+ x

5. Let u = x3 − 1. Then du = 3x2 dx. Substituting:∫
3x2

x3 − 1
dx =

∫
1

u
du = lnu+ C

= ln
(
x3 − 1

)
+ C

Taking the derivative:

d

dx

[
ln

(
x3 − 1

)
+ C

]
=

d

dx
ln

(
x3 − 1

)
+

d

dx
C
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=
1

x3 − 1
·
[
d

dx

(
x3 − 1

)]
=

3x2

x3 − 1

Answer to Exercise 2 (on page 9)

1. Let g(x) = u = sin x. Then du = cos x dx. Additionally, g(0) = sin 0 = 0 and
g(π/2) = sin (π/2) = 1. Substituting and changing the limits of integration:∫π/2

0

cos x sin (sin x)dx =

∫ 1
0

sinudu = − cosu|10 = cos 0− cos 1 = 1− cos 1

2. Let g(x) = u = 1 + 2x. Then du = 2 dx and du
2 = dx. Additionally, g(0) = 1 and

g(13) = 1+ 2(13) = 27. Substituting and changing the limits of integration:∫ 13
0

1

3

√
(1+ 2x)2

dx =
1

2

∫ 27
1

1
3
√
u2

du =
1

2

∫ 27
1

u−2/3 du

=
1

2

[
3u1/3

]27
1

=
3

2

[
3
√
27−

3
√
1
]
=

3

2
(3− 1) = 3

3. Let g(x) = u = 1/x. Then du = (−1/x2)dx and −du = dx/x2. Additionally, g(1) = 1

and g(2) = 1/2. Substituting and changing the limits of integration:∫ 2
1

e1/x

x2
dx = −

∫ 1/2
1

eu du =

∫ 1
1/2

eu du

= eu|11/2 = e−
√
e

4. Let g(x) = u = cos x. Then du = − sin x dx and −du = sin x dx. Additionally,
g(0) = cos 0 = 1 and g(π/6) = cos π

6 =
√
3
2 . Substituting and changing the limits of

integration: ∫π/6
0

sin x

cos2 x dx = −

∫√3/2

1

1

u2
du =

∫ 1
√
3/2

1

u2
du

= −
1

u
|1√

3/2
=

2√
3
− 1 =

2
√
3− 3

3

5. Let g(x) = u = 1 + 2x. Then du = 2 dx and du
2 = dx. And if u = 1 + 2x, then

x = u−1
2 . Additionally, g(0) = 1 and g(4) = 9. Substituting and changing the limits

of integration: ∫ 4
0

x√
1+ 2x

dx =
1

2

∫ 9
1

u−1
2√
u
du =

1

4

∫ 9
1

u− 1√
u

du
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=
1

4

∫ 9
1

√
u−

1√
u
du =

1

4

[
2

3
u3/2 − 2u1/2

]9
1

=
1

4

[
2

3

(
93/2 − 13/2

)
− 2

(√
9−

√
1
)]

=
1

4

[
2

3
(26) − 2 (2)

]
=

1

4

[
52

3
− 4

]
=

1

4

[
52− 12

3

]
=

1

4

[
40

3

]
=

10

3

Answer to Exercise 3 (on page 14)

Recall that for a polar function, dy
dx =

dy
dθ
dx
dθ

. We also know that x = r cos θ, which equals
[1+ 2 sin θ] · cos θ = cos θ+ 2 sin θ cos θ in this case. We also know that y = r · sin θ, which
equals [1+ 2 sin θ] · sin θ = sin θ+ 2 sin2 θ in this case. Taking the derivative with respect
to θ:

dy

dθ
=

d

dθ

[
sin θ+ 2 sin2 θ

]
dy

dθ
= cos θ+ 4 sin θ cos θ

And

dx

dθ
=

d

dθ
[cos θ+ 2 sin θ cos θ]

dx

dθ
= − sin θ− 2 sin2 θ+ 2 cos2 θ

Evaluating each at θ = 0:

dy

dθ
= cos 0+ 4 sin 0 cos 0 = 1+ 0 = 1

dx

dθ
= − sin 0− 2 sin2 0+ 2 cos2 0 = 0− 0+ 2 = 2

Therefore, dr
dθ = dy/dθ

dx/dθ
= 1

2

Answer to Exercise 4 (on page 15)

1. Answer: slope = −
√
3
3 and an equation for the tangent line is y−

√
3
6 = −

√
3
3

(
x− 1

2

)
.
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Explanation: dy
dx = dy/dθ

dx/dθ
=

d
dθ

r·sinθ
d
dθ

r·cos θ =
d
dθ

(
2
3
cos θ sin θ

)
d
dθ

(
2
3
cos2 θ

) =
2
3

(
cos2 θ−sin2 θ

)
2
3
(−2 cos θ sin θ)

= sin2 θ−cos2 θ
2 cos θ sin θ

Substituting θ = π
6 :

dy
dx = sin2 π/6−cos2 π/6

2 cosπ/6 sinπ/6
=

(1/2)2−
(√

3/2
)2

2
(√

3/2
)
(1/2)

= 1/4−3/4√
3/2

= −1/2√
3/2

= −1
2 · 2√

3
=

−
√
3
3

To write an equation for a line, we need a Cartesian point. First, we find r at θ = π
6 :

r = 2
3 cos

(
π
6

)
= 2

3 ·
√
3
2 =

√
3
3 . So the point the tangent passes through is the polar

coordinate
(√

3
3 , π6

)
. We convert this to Cartesian coordinates: x = r cos θ =

√
3
3 ·

cos
(
π
6

)
=

√
3
3 ·

√
3
2 = 3

6 = 1
2 And y = r sin θ =

√
3
3 · sin

(
π
6

)
=

√
3
3 · 1

2 =
√
3
6

So, an equation for a line with slope −
√
3
3 that passes through Cartesian coordinate(

1
2 ,

√
3
6

)
is: y−

√
3
6 = −

√
3
3

(
x− 1

2

)
2. Answer: slope = 2

π and an equation for the tangent line is y− 1
π = 2

πx

Explanation: dy
dx = dy/dθ

dx/dθ
=

d
dθ

(
sin θ
2θ

)
d
dθ

(
cos θ
2θ

) =
θ cos θ−sin θ

2θ2

−θ sin θ+cos θ
2θ2

= sin θ−θ cos θ
θ sin θ+cos θ .

Substituting θ = π
2 :

dy
dx =

sin π
2
−
(
π
2

)
cos π

2(
π
2

)
sin π

2
+cos π

2

=
1−

(
π
2

)
·0(

π
2

)
·1+0

= 1
π
2
= 2

π

To write an equation for a line, we need a Cartesian point. First, we find r at θ = π
2 :

r = 1
2θ = 1

2π
2
= 1

π . So the tangent line passes through the point with polar coordinates(
1
π ,

π
2

)
. We convert this to Cartesian coordinates: x = r · cos θ = 1

π · cos π
2 = 1

π · 0 = 0

and y = r · sin θ = 1
π · sin π

2 = 1
π · 1 = 1

π .
So, an equation for a line with slope 2

π that passes through Cartesian coordinate(
0, 1

π

)
is y− 1

π = 2
πx

3. Answer: slope= − 5√
3
and an equation for the tangent line is y−

√
3
4 =

(
− 5√

3

) (
x+ 1

4

)
.

Explanation: dy
dx = dy/dθ

dx/dθ
=

d
dθ

[(2+3 cos θ)·sin θ]
d
dθ

[(2+3 cos θ)·cos θ] =
cos θ(2+3 cos θ)−3 sin2 θ

(2+3 cos θ)·(− sin θ)+cos θ(−3 sin θ) =
cos θ(2+3 cos θ)−3 sin2 θ

−2 sin θ(1+3 cos θ) .

Substituting θ = 2π
3 : dy

dx =
cos 2π

3

(
2+3 cos 2π

3

)
−3 sin2 2π

3

−2 sin 2π
3

(
1+3 cos 2π

3

) =

(
− 1

2

)(
2+3

(
− 1

2

))
−3

(√
3

2

)2

−2
(√

3
2

)(
1+3

(
− 1

2

)) =(
− 1

2

)(
2− 3

2

)
−3

(
3
4

)
−
√
3
(
1− 3

2

) =

(
− 1

2

)(
1
2

)
− 9

4

−
√
3
(
− 1

2

) =
− 1

4
− 9

4√
3

2

= −
10
4√
3

2

= − 10·2
4·
√
3
= − 5√

3

To write an equation for a tangent line, we need a Cartesian point. First, we find
r at θ = 2π

3 : r = 2 + 3 cos 2π
3 = 2 + 3

(
−1
2

)
= 2 − 3

2 = 1
2 . So the tangent line

passes through polar coordinate
(
1
2 ,

2π
3

)
. We convert this to Cartesian coordinates:

x = r cos θ = 1
2 cos

2π
3 = 1

2

(
− 1

2

)
= − 1

4 and y = r sin θ = 1
2 sin

2π
3 = 1

2

(√
3
2

)
=

√
3
4 .

So, an equationwith slope−
√
5
3 that passes through the Cartesian coordinate

(
− 1

4 ,
√
3
4

)
is: y−

√
3
4 =

(
− 5√

3

) (
x+ 1

4

)
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Answer to Exercise 5 (on page 22)

We know the area of the circle is πr2 = π(2)2 = 4π. To find the area of the shaded regions,
we need to subtract the area of the trefoil from the area of the circle. The trefoil has three
equal areas. We can find the area of the leaf that is formed on the interval π

6 ≤ θ ≤ π
2 (see

figure below).

π

7π
6

4π
3 3π

2

012

The area of one leaf of the trefoil is given by 1
2

∫π/2
π/6

[2 cos 3θ]2 dθ. Using a calculator, the
area of one leaf is ≈ 1.0472. The area of the circle is given by πr2 = π(2)2 ≈ 12.5664. The
area of the shaded region is the area of the circle minus three times the area of a single
leaf: 12.5664− 3 · 1.0472 = 9.4248 ≈ 9.425.

Answer to Exercise 6 (on page 23)

1. Answer: A = eπ/8
(
eπ/8 − 1

)
Explanation: A = 1

2

∫π/2
π/4

[
eθ/2

]
, dθ = 1

2 ·2
[
eθ/2

]θ=π/2

θ=π/4
= eπ/4−eπ/8 = eπ/8

(
eπ/8 − 1

)
≈

0.712

2. Answer: The area is 1
2

[
eπ/2 − eπ/4

]
≈ 1.309

Explanation: A = 1
2

∫π/2
π/4

[
eθ/2

]2
dθ = 1

2

∫π/2
π/4

eθ dθ = 1
2e

θ|
θ=π/2

θ=π/4
= 1

2

[
eπ/2 − eπ/4

]
≈

1.309

3. Answer: A = 41
4 π ≈ 32.201

Explanation: A = 1
2

∫π/2
−π/2

[4+ 3 sin θ]2 dθ = 1
2

∫π/2
−π/2

[
16+ 24 sin θ+ 9 sin2 θ

]
dθ =
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∫π/2
−π/2

8 dθ + 12
∫π/2
−π/2

sin θdθ + 9
2

∫π/2
−π/2

sin2 θdθ = [8θ]
θ=π/2

θ=−π/2
+ 12 [− cos θ]θ=π/2

θ=−π/2
+

9
2

∫π/2
−π/2

1−cos 2θ
2 dθ = 8

[(
π
2

)
−
(
−π
2

)]
+12

[(
− cos π

2

)
−
(
− cos −π

2

)]
+ 9

4

∫π/2
−π/2

1 dθ− 9
4

∫π/2
−π/2

cos 2θdθ =

8π+12 (0− 0)+ 9
4 [θ]

θ=π/2

θ=−π/2
− 9

4

[
1
2 sin 2θ

]θ=π/2

θ=−π/2
= 8π+ 9

4

[(
π
2

)
−
(
−π

2

)]
− 9

8

[
sin

(
2 · π

2

)
− sin

(
2 ·−π

2

)]
=

8π+ 9
4π− 9

8 [sin (π) − sin (−π)] = 41
4 π− 9

8 [0− (−0)] = 41
4 π ≈ 32.201

Answer to Exercise 7 (on page 24)

Answer: The area between the circles is approximately 0.96174.

Explanation: Examining the graph, we see that the region we are interested in is the area
within r = 4 sin θ from θ = 0 to θ = θi plus the area within r = 2 cos θ from θ = θi to
θ = π

2 , where θi is the angle where the two curves intersect. Examine the graph below to
see why this is true.

0

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

0 1 2 3 4

Setting the equations equal to each other to find θi:

4 sin θi = 2 cos θi

sin θi
cos θi

= tan θi =
2

4

θi = arctan 1/2 ≈ 0.464



48 Chapter A. ANSWERS TO EXERCISES

So, the total area between the circles is:

1

2

∫θi
0

[4 sin θ]2 dθ+
1

2

∫π/2
θi

[2 cos θ]2 dθ

= 8

∫θi
0

sin2 θdθ+ 2

∫π/2
θi

cos2 θdθ

= 8

∫θi
0

1

2
(1− cos 2θ) dθ+ 2

∫π/2
θi

1

2
(1+ cos 2θ) dθ

= 4

∫θi
0

(1− cos 2θ) dθ+

∫π/2
θi

(1+ cos 2θ) dθ

= 4

[
θ−

1

2
sin 2θ

]θ=θi

θ=0

+

[
θ+

1

2
sin 2θ

]θ=π/2

θ=θi

= 4

[
(θi − 0) −

1

2
(sin 2θi − sin 0)

]
+

[(π
2
− θi

)
+

1

2
(sinπ− sin 2θi)

]
= 4

[
θi −

1

2
sin 2θi

]
+

π

2
− θi −

1

2
sin 2θi

= 4θi − 2 sin 2θi +
π

2
− θi −

1

2
sin 2θi = 3θi −

5

2
sin 2θi +

π

2

Substituting θi = arctan 1/2 ≈ 0.464:

= 3(0.464) −
5

2
sin 0.927+

π

2
≈ 0.96174

Answer to Exercise 8 (on page 29)

1. 4200

2. Logically, we can say that the population will increase if it is below the carrying
capacity (that is, P < 4200), but we can also prove it mathematically: dP

dt < 0 →
1.2P

(
1− P

4200

)
< 0 → P

(
1− P

4200

)
< 0. Since we are talking about population, we

can assume that P > 0 and continue: 1 − P
4200 < 0 → 1 < P

4200 → 4200 < P, which is
the result we expected.

3. Similarly, we know the population should be decreasing when P is greater than the
carrying capacity of 4200.

4. The equilibrium solutions can be found by setting dP
dt = 0 and solving. The solutions

are P(t) = 0 and P(t) = 4200.
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Answer to Exercise 9 (on page 29)

Recall that logistic differential equations are of the form dy
dt = ky(1 − y

m) where y is a
function and t is the independent variable. (e) is the only logistic differential equation,
with m = 1.

Answer to Exercise 10 (on page 31)

dy

dx
dx =

3x2

2y+ siny
dx

(2y+ siny)(dy) =
3x2

2y+ siny
(2y+ siny)(dx)

(2y+ siny)dy = (3x2)dx∫
2ydy+

∫
sinydy =

∫
3x2 dx

y2 − cosy = x3 + C

Answer to Exercise 11 (on page 32)

1. Since dB
dt depends only on B, we can use the given masses to find the rate of growth

for each mass. dB
dt (40) = 1

5 (100− 40) = 1
5 (60) = 12 and dB

dt (70) = 1
5 (100− 70) =

1
5 (30) = 6. Since dB

dt is greater when B = 40, the baby bird is gaining mass faster
when it has a mass of 40 grams.

2. d2B
dt2

= d
dt

(
dB
dt

)
= d

dt

[
1
5 (100− B)

]
= 1

5

(
−dB

dt

)
= −1

5

[
1
5 (100− B)

]
= − 1

25 (100− B). For
20 < B < 100, d2B

dt2
< 0 and the graph of B should be concave down. The graph

shown has a concave up portion, so it cannot represent B(t).

3. dB
dt = 1

5 (100− B) → dB
100−B = 1

5dt → ∫
(100− B) dB =

∫
1
5 dt → − ln 100− B =

t
5 +C → e

−t
5
+C = 100−B → ke

−t
5 = 100−B → B(t) = 100− ke

−t
5 . Setting B(0) = 20

to find k: 20 = 100 − ke0 → 20 = 100 − k → k = 80. So, the particular solution is
B(t) = 100− 80e

−t
5

Answer to Exercise 12 (on page 34)

(A). (a), (b), and (c) are all separable equations. But only the solution to A is linear
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(P(t) = 200t+ C). (d) is logarithmic, or natural growth and (e) is also not linear.

Answer to Exercise 13 (on page 40)

−3 −2 −1 1 2 3

−2

2

x

y
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