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Chapter 1

Conditional Probability

Let’s say there is a virus going around, and there is a vaccine for it that requires two shots.
You are working at a school, and you are wondering how effective the vaccines are. Some
students are unvaccinated, some have had one shot, and some have had two shots. One
day, you test all 644 students to see who has the virus. You end up with the following

table:
V0 V1 V2

T+ 88 students 36 students 96 students
T− 92 students 76 students 256 students

Here is what each symbol means:

• V0: student has had zero vaccination shots

• V1: student has had one vaccination shot

• V2: student has had both vaccination shots

• T+: student tested positive for the virus

• T−: student tested negative for the virus

So, for example, your data indicates that 76 students who had only one of the two shots
and tested negative for the virus.

Your principal has a few questions. The first is, “If I put five randomly chosen students
in a study group together, what is the probabiltiy that one of them has the virus?”

The first thing you might do is make a new table that shows what is the probability of
a randomly chosen student being in any particular group. You just divide each entry by
644 (the total number of students).

V0 V1 V2

T+ p(V0 AND T+) = 13.7% p(V1 AND T+) = 5.6% p(V2 AND T+) = 14.9%
T− p(V0 AND T−) = 14.3% p(V1 AND T−) = 11.8% p(V2 AND T−) = 39.8%

(In this table, we expressed the number as a percentage with a decimal point — you had
to round off the numbers. If you wanted exact answers, you would have to keep each as
a fraction: 36 students represents 9

161 of the student body.)
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4 Chapter 1. CONDITIONAL PROBABILITY

1.1 Marginalization

Now we can sum across the columns and rows.

V0 V1 V2 sum
T+ 0.137 0.056 0.149 p(T+) = 0.342

T− 0.143 0.118 0.398 p(T+) = 0.547

sum p(V0) = 0.280 p(V1) = 0.174 p(V2) = 0.547

If a child is chosen randomly from the entire student body, there is a 34.2% that the student
has tested positive for the virus, and there is 17.4% chance that the student has one shot
of the vaccine.

This summing of the probabilities across one dimension is known asmarginalizing. Marginal-
ization is just summing across all the variables that you don’t care about. If you don’t care
who has the virus, just the probability that a student has not received even one shot of
the vaccine, you can simply marginalize all the vaccine statuses.

To answer the principal’s question, the easy thing to do is find the answer of the opposite:
“if I put five randomly chosen students in a study group together, what is the probabiltiy
that none of them has tested positive for the virus?”

The chance that a randomly chosen student doesn’t have the virus (p(T−) is 54.7%. This
means the chance that 5 randomly chosen students don’t have the virus is 0.547× 0.547×
0.547× 0.547× 0.547 = 0.0489 Thus, the probability of the opposite is 1.0− 0.0489 = 0.951

The answer, then, is “If you put 5 kids in a study group together, there is a 95.1 % proba-
bility that at least one of them has the virus.”

1.2 Conditional Probability

Now the principal asks you, “What if I make a group of five kids who have had both shots
of the vaccine? What are the odds that one of them has tested positive for the virus?”

This involves the idea of Conditional probability. You want to know the odds that a student
doesn’t have the virus, given that the student has had both shots of the vaccine.

There is a mathematical notation for this:

p(T−|V2)

That is the probability that a student who has had both vaccination shots will test negative
for the virus.
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How would you calculate this? You would count all the students who had a positive test
and both vaccination shots, which you would divide by the total number of students who
had both vaccination shots.

p(T−|V2) =
256

96+ 256
=

8

11
≈ 72.7%

If we are working from the probabilities, you can get the same result this way. Divide the
probability that a randomly chosen student had a positive test and both vaccination shots
by the probabiltiy that a student had both vaccination shots:

p(T−|V2) =
p(T− AND V2)

p(T−)
=

0.398

0.547
≈ 72.7%

Notice that this is different from p(V2|T−), which is the probability that a student has had
both vaccinations, given they tested negative for the virus.

Back to the principal’s question: “If you have five students who have had both vaccina-
tions, what is the probability that all of them tested negative for the virus?” The probabil-
ity that one student is virus-free is 8

11 , so the probability that five students are virus-free
is 8

11

5 ≈ 0.203. So, there is a 79.6% chance that at least one of the five has the virus.

1.3 Chain Rule for Probability

You just used this equality: For any events A and B

p(A|B) =
p(A AND B)

p(B)

This is more commonly written like this:

p(A AND B) =
p(A|B)

p(B)

This is an abstract way of writing the idea, but the idea itself is pretty intuitive. The
probability that you are going to buy a ticket and win the lottery is equal to the probability
that you buy a ticket times the probability that you win, given that you have bought a
ticket. (Here A is “win the lottery” and B is “buy a ticket”.)

This is known as The Chain Rule of Probability. We can chain together as many events as
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we want: The probability that you are going to die in the car that you bought with your
winnings from the lottery ticket you bought is:

p(W AND X AND Y AND Z) = p(W|X AND Y AND Z)p(X|Y AND Z)p(Y|Z)p(Z)

where

• W = Dying in car accident

• X = Buying a car with lottery winnings

• Y = Winning the lottery

• Z = Buying a lottery ticket

In English, the equation says:

“The probability that you will die in a car accident, buy a car with lottery winnings, win
the lottery, and buy a lottery ticket is equal to the probability that you buy a lottery ticket
times the probability that you win the lottery (given that you have bought a ticket) times
the probability that buy a car with those lottery winnings (given that bought a ticket and
won) times the probability that you crash that car (given that you have bought the car,
won the lottery, and bought a ticket).”



Chapter 2

Bayes’ Theorem

Let’s say that you are holding two bags of marbles. You know that one bag contains 60
white marbles and 40 red marbles, and you know that the other holds 10 white marbles
and 90 red marbles. You don’t know which is which, and you can’t see the marbles.

Your friend says, “Guess which bag is mostly red marbles.” You pick one.

“What is the probability that this is the bag that is mostly red marbles?” You think to
yourself ”There is a 50 percent chance that this bag is mostly red marbles, and there is
also a 50 percent probability that it is the mostly-white-marbles bag.”

You then pick one marble from the bag: it is red. Now you must update your beliefs. It
is more likely that this is the mostly-red-marbles bag. What is the probability now?

Bayes Theorem gives you the rule for updating your beliefs based on new data.

2.1 Bayes Theorem

Let’s say you have two events or conditions C and D. C is “The person has a cough” and
D is “The person is waiting to see a doctor.”

Using the chain rule of probability, we now have two ways to calculate p(C AND D):

p(C AND D) = p(C|D)p(D)

(The probability the person is at the doctor multiplied by the probability they have a
cough if they are at the doctor.)

or

p(C AND D) = p(C|D)p(D)

(The probabilitiy the person has a cough multiplied by the probabilitiy they are at the doc-
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8 Chapter 2. BAYES’ THEOREM

tor if they have a cough.)

Thus:

p(D|C) =
p(C|D)p(D)

P(C)

Now, you can calculate p(D|C) (in this case, the probability that you are waiting to see a
doctor given that you have a cough.) if you know:

• p(C|D) (The probability that you have a cough given that you are waiting to see a
doctor)

• p(D) (The probability that you are waiting for a doctor for any reason.)

• p(C) (The probability that you have a cough anywhere)

Pretty much all modern statistical methods (including most artificial intelligence) are
based on this formula, which is known as Bayes’ Theorem. It was written down by Thomas
Bayes before he died in 1761. It was then found and published after his death.

2.2 Using Bayes’ Theorem

Back to the example at the beginning. To review:

• There are two bags that look exactly the same.

• Bag W has 60 white marbles and 40 red marbles.
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• Bag R has 10 white marbles and 90 red marbles.

• You pull one marble from the selected bag: it is red.

What is the probability that the selected bag is Bag R? Intuitively, you know that the
probability is now more than 0.5. What is the exact number?

In terms of conditional probability, we say we are looking for “the probability that the
selected bag is Bag R, given that you drew a red marble”, or p(BR|DR), where BR is “the
selected bag is Bag R” and DR is “you drew a red marble from the selected bag”.

From Bayes’ Theorem, we can write:

p(BR|DR) =
P(DR|BR)P(BR)

P(DR)

P(DR|BR) is just the probability of drawing a red marble given that the selected bag is
Bag R. That is easy to calculate: There are 100 marbles in the bag, and 90 are red. Thus,
P(DR|BR) = 0.9.

P(BR) is just the probability that you chose Bag R before you drew out a marble. Both
bags look the same, so P(BR) = 0.5. This is called the prior, because it represents what you
thought the probability was before you got more information.

P(DR) is the probability of drawing a red marble. There was 0.5 probability that you put
your hand into Bag W (in which 40 of the 100 marbles are red) and a 0.5 probability that
you put your hand into Bag R (in which 90 of the 100 marbles are red). So

P(DR) = 0.5
40

100
+ 0.5

90

100
= 0.65

Putting it together:

p(BR|DR) =
P(DR|BR)P(BR)

P(DR)
=

(0.9)(0.5)

0.65
=

9

13
≈ 0.69

Thus, given that you have pulled a red marble, there is about a 69% chance that you have
selected the bag with 90 red marbles.
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2.3 Confidence

Bayes’ Theorem, then, is about updating your beliefs based on evidence. Before you drew
out the red marble, you selected one bag thinking it might contain 90 red marbles. How
certain were you? 0.0 being complete disbelief and 1.0 entirely confidence, you were 0.5.
After pulling out the red marble, you were about 0.69 confident that you had chosen the
bag with 90 red marbles.

The question “How confident are you in your guess?” is very important in some situations.
For example in medicine, diagnoses often lead to risky interventions. Few diagnoses come
with 100% confidence. All doctors should know how to use Bayes’ Theorem.

In a trial, a jury is asked to determine if the accused person is guilty of a crime. Few jurors
are ever 100% certain. In some trials, Bayes’ Theorem is an exceptionally important tool.



Chapter 3

Antiderivatives

In your study of calculus, you have learned about derivatives, which allow us to find
the rate of change of a function at any given point. Derivatives are powerful tools that
help us analyze the behavior of functions. Now, we will explore another concept called
antiderivatives, which are closely related to derivatives.

An antiderivative, also known as an integral or primitive, is the reverse process of differ-
entiation. It involves finding a function whose derivative is equal to a given function. In
simple terms, if you have a function and you want to find another function that, when
differentiated, gives you the original function back, you are looking for its antiderivative.
Consider the graph of f(x) below. We can sketch a possible antiderivative of f by noting
the slope of the antiderivative is equal to the value of f. We will refer to the antiderivative
of f as F(x) (that is, F ′(x) = f(x)).

0.5 1 1.5 2

−2

−1

1

2

x

f(x)

Figure 3.1: Plot of f with select points

If we are given a coordinate for F(x), then we can use the graph of f(x) to sketch F(x).
Suppose we know that F(0) = 1. From the graph of f, we also know that
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x f(x) = slope of F(x)
0 -2

≈ 0.3 0
≈ 0.6 ≈ 0.5

1 0
≈ 1.4 ≈ −0.4

≈ 1.7 0
2 2

0.5 1 1.5 2

0.5

1

1.5

x

f(x)

Figure 3.2: Beginning sketch of F(x)

We can then connect these slopes to have an approximate sketch of F(x):

0.5 1 1.5 2

0.5

1

1.5

x

f(x)

Figure 3.3: Sketch of F(x)

The symbol used to represent an antiderivative is
∫
. It is called the integral sign. For

example, if f(x) is a function, then the antiderivative of f(x) with respect to x is denoted
as

∫
f(x)dx. The dx at the end indicates that we are integrating with respect to x.
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Another way to state this is that F is the antiderivative of f on an interval, I, if F ′(x) = f(x)
over the interval. The relationship between f and F is discussed more in the chapter on
the Fundamental Theorem of Calculus.

Finding antiderivatives requires using specific techniques and rules. Some common an-
tiderivative rules include:

• The power rule: If f(x) = xn, where n is any real number except −1, then the
antiderivative of f(x) is given by

∫
f(x)dx = 1

n+1x
n+1+C, where C is the constant of

integration.

• The constant rule: The antiderivative of a constant function is equal to the constant
times x. For example, if f(x) = 5, then

∫
f(x)dx = 5x+ C.

• The sum and difference rule: If f(x) and g(x) are functions, then
∫
(f(x)+g(x))dx =∫

f(x)dx+
∫
g(x)dx. Similarly,

∫
(f(x) − g(x))dx =

∫
f(x)dx−

∫
g(x)dx.

Antiderivatives have various applications in mathematics and science. They allow us to
calculate the total accumulation of a quantity over a given interval, compute areas under
curves, and solve differential equations, among other things.

3.1 General Antiderivatives

It is important to note that an antiderivative is not a unique function. Since the derivative
of a constant is zero, any constant added to an antiderivative will still be an antiderivative
of the original function. This is why we include the constant of integration, denoted by
C, in the antiderivative expression.

Stated formally, if F is an antiderivative of f on interval I, then the most general antideriva-
tive of f on I is F(x) + C, where C is an arbitrary constant.

A concrete example of this is f(x) = x2. Let us define F(x) such that F ′(x) = f(x). That is,
there is some function F such that the derivative of F is x2. One possible solution for F is
F(x) = 1

3x
3. You can check using the power rule that d

dxF(x) = f(x). What if we added or
subtracted a constant from F? Let’s define G(x) = 1

3x
3 + 2. Well, G ′(x) = f(x) also! The

same applies for H(x) = 1
3x

3 − 7. Several possible antiderivatives of f(x) = x2 are shown
in figure 3.4.

Since taking a derivative ”erases” any constant, you must always add back in the unknown
constant, C, when finding the general antiderivative.
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−3 −2 −1 1 2 3

−10

−5

5

10

15

x

y
C = −5

C = −3

C = −1

C = 1

C = 3

C = 5

Figure 3.4: If F ′(x) = x2, then the general solution is F(x) = 1
3x

3 + C

3.2 Specific Antiderivatives

If you are given a condition, you can often solve for C and find a specific antiderivative.
For example, suppose that in addition to knowing that F ′(x) = x2, we also know that
F(3) = 2. We can use the fact that F passes through (3, 2) to find the value of C:

F(x) =
1

3
x3 + C

F(3) =
1

3
(3)2 + C = 2

39+ C = 2

C = −7

Therefore, the specific solution to F ′(x) = x2 with the condition that F(3) = 2 is F(x) =
1
3x

3 − 7.

3.3 Antiderivatives of Trig Functions

We already know that d
dx sin x = cos x. Taking sin x to be F(x) and cos x to be f(x), we see

that F ′(x) = f(x) and therefore, sin x is the antiderivative of cos x.
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Exercise 1

.What is the antiderivative of sin x? Ex-
plain your answer.

Answer on Page 39

Working Space

You should have found that the antiderivative of sin x is − cos x. Other general antideriva-
tives of trigonometric functions are presented in the table below.

Function Antiderivative
cos x sin x+ C

sin x − cos x+ C

sec2 x tan x+ C

sec x tan x sec x+ C

− csc2 x cot x+ C

− csc x cot x csc x+ C

Notice this is the flipped version of the derivatives of trigonometric functions presented
in the Trigonometric Functions chapter. This hints at the relationship between derivatives
and integrals: they are opposite processes.

3.4 Other Important Antidervatives

The power rule only applies when n 6= −1. So, what is the antiderivative of f(x) = 1
x?

Recall from the chapters on derivatives that d
dx ln x = 1

x (see figure 3.5). Therefore, the
general antiderivative of 1

x is ln |x| + C. We have to take the absolute value because of
the domain restrictions of ln x. Notice that for x < 0, the slope of ln |x| is negative and
decreasing (becoming more negative), and the value of 1

x is also negative and decreasing.
Similarly, for x > 0, the slope of ln |x| is positive and decreasing (becoming less positive)
and the value of 1

x is also positive and decreasing.

Since the derivative of ex is ex, it follows that the general antiderivative of ex is ex + C.
What if there is a multiplying factor in the exponent, such as ekx? Recall that d

dxe
kx = kekx.

It follows that d
dx

1
ke

kx = ekx. Therefore, the general antiderivative of ekx is 1
ke

kx + C. (See
figure 3.6 for an example where k = 2.)

Often, the base of an exponential function is not e. We can also find the general an-
tiderivative of bx, where b 6= e. Recall that d

dxb
x = lnbbx. Therefore, d

dx
1

ln bb
x = bx, and
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−4 −2 2 4

−4

−2

2

4

x

y
f(x) = 1

x∫
1
x dx = ln |x|

Figure 3.5: 1
x and its antiderivative, ln |x|
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20
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y
e2x

1
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2x

Figure 3.6: e2x and its antiderivative 1
2e

2x
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the general antiderivative of bx is bx

ln b .

3.5 Higher order antiderivatives

What if we are given the second order derivative, or a higher order? Take this example:
f ′′(x) = 2x+3ex. The antiderivative of f ′′ is f ′. Applying the power rule and knowing the
antiderivative of ex is ex, we find that f ′(x) = x2 + 3ex + C1. We designate the constant
as C1, because we will have to determine the antiderivative a second time and we don’t
want to confuse our constants with each other. To find f, we apply the power rule again,
and we find that f(x) = 1

3x
3 + 3ex + C1x + C2. You can check if this is correct by taking

the derivative of f(x) twice, which should yield the f ′′(x) originally given.

In summary, antiderivatives are the reverse process of differentiation. They help us find
functions whose derivatives match a given function. Understanding antiderivatives is
crucial for various advanced calculus concepts and real-world applications.

Now, let’s explore different techniques and methods for finding antiderivatives and dis-
cover how they can be applied in solving problems.

3.6 Additional Practice

Exercise 2

.A particle moving in a straight line has
an acceleration given by a(t) = 6t+4 (in
units of cm

ss ). If its initial velocity is−6 cm
s

and its initial position is 9cm, what is the
function s(t) that describes the particle’s
position in cm?

Answer on Page 39

Working Space
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Exercise 3

.Let f ′(x) = 2 sin x. If f(π) = 1. Write an
expression for f(x).

Answer on Page 39

Working Space

Exercise 4

.Find the general antiderivatives of the
following functions:

1. f(x) = x2 + 2x− 4

2. g(x) =
3
√
x2 + x

√
x

3. h(x) = 1
5 −

2
x

4. r(θ) = 2 sin θ− sec2 θ

Answer on Page 40

Working Space

Exercise 5

.Find the f that satisfies the given condi-
tions:

1. f ′(θ) = sin θ+ cos θ, f(π) = 2

2. f ′′(x) = 12x2 + 6x− 4, f(0) = 4 and
f(1) = 1

Answer on Page 40

Working Space
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Riemann Sums

4.1 The Meaning of the Area Under a Function

Let’s look at the example of a hammer tossed in the air from a previous chapter. As you
may recall, if a hammer is tossed up from the ground at 5 m/s, its velocity can be described
as v(t) = 5 − 9.8t (on Earth, where the acceleration due to gravity is approximately −9.8
m
s2
). The velocity function of our hammer from when it is tossed (t = 0) to when it hits

the ground t ≈ 1.02) is shown in figure 4.1.

0.2 0.4 0.6 0.8 1

−4

−2

2

4

t(sec)

v(m/s)

Figure 4.1: Velocity of a hammer thrown upwards at 5 m/s

Now, suppose we only have this velocity function, and we want to know how high above
its initial position the hammer is tossed. Examine the graph: At approximately what time
does the hammer reach its peak height? (Hint: what should the hammer’s velocity be
when it reaches its peak?). At the highest point of its flight, the hammer’s velocity will be
0 m

s , which occurs at approximately t = 0.5s (it’s actually t = 0.5102s but we don’t need
to be that precise for this example).

Now that we know when the hammer reaches its peak, how can we determine how high
that peak is? Recall that velocity is the slope of the position-time graph. Since slope is
change in position divided by change in time (in this case, as time is on the x-axis and
position on the y-axis), then the slope must have units of [position]/[time] which could
be m

s ,
miles
hr , and so on. These are units of velocity!

In figure 4.1, you can see that the units on the x-axis are seconds, and on the y-axis, the
units are m

s . If we are looking for a displacement (that is, how far from its initial position
the hammer has traveled), we are looking for a solution with units of meters. To yield

19



20 Chapter 4. RIEMANN SUMS

an answer with those units, we wouldn’t use the slope of the graph; this would yield an
answer with units m

ss , the units for acceleration. Instead, we need to multiply! The area
between the velocity function and the x-axis (see figure 4.2) can be found this way:

Area =
1

2
bh

where b is the base of the triangle and h is the height.

Area =
1

2
(0.5s)(5

m

s
)

Area = 1.25m

0.2 0.4 0.6 0.8 1

−4

−2

2

4

t (sec)

v (m/s)

Figure 4.2: The area under v(t) from x = 0 to x = 0.5 is equal to the displacement of the
hammer

Notice that when multiplying the change in time (0.5 s) by the change in velocity (1.25
m
s ), the seconds units cancel, yielding a result with units of meters. Therefore, the ham-
mer reaches a peak height of ≈ 1.25 m, which you can confirm by examining the graph
originally presented for the hammer toss in the chapter on graph shape.

4.1.1 Determining the Meaning of the Area with Units
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Exercise 6

.What units will the area shown in the
graph have? Based on your answer, does
the area represent a displacement, a net
change in velocity, or a net change in
acceleration? Calculate the shaded area
[hint: areas below the x-axis are nega-
tive]. Write a sentence in plain English
explaining what the are you calculated
means.

2 4 6 8 10

−2

2

4

6

t(sec)

acceleration(m
s2
)

Answer on Page 40

Working Space
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Exercise 7

.The graph below shows historical data
of the number of deaths due to SARS in
Singapore over several months in 2003.
What would the area under the curve
represent?

20 40 60 80

0.2

0.4

0.6

days since Feb. 28

deaths per day

Answer on Page 41

Working Space

Exercise 8

.Oil leaked from a tank at a rate of r(t)
liters per hour. A site engineer recorded
the leak rate over a period of 10 hours,
shown in the table. Plot the data. How
could you estimate the total volume of
oil lost?

t(h) 0 2 4 6 8 10
r(t)(L/h) 8.7 7.6 6.8 6.2 5.7 5.3

Answer on Page 41

Working Space
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4.2 Estimating the area under functions

In the hammer example above, it was easy to determine the area under the function, since
the area took the shape of a triangle. However, what about finding the area under a more
complex function, such as f(x) = sinx+ x (shown in figure 4.3)?

π
4

π
2

3π
4

π

1

2

3

A

x

y

Figure 4.3: f(x) = sin x+ x

How can we determine the area under f(x) = sin x + x from x = 0 to x = π? We can
estimate the area of that region by dividing the region into rectangles, finding the areas
of the rectangles, and adding the areas. As an example, we will divide the region under
f(x) = sin x+ x into 4 intervals, shown in figure 4.4.

π
4

π
2

3π
4

π

1

2

3

A1 A2 A3 A4

x

y

Figure 4.4: f(x) = sin x+ x divided into 4 regions

As you can see in figure 4.4, each rectangle will have a width of π
4 . But what about

the height? One way is to use the value of the function at the rightmost value of each
rectangle, as shown in figure 4.5.
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π
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Figure 4.5: Four rectangle sections with heights determined by rightmost value of f(x) on
each interval

We can easily calculate the areas of each of these rectangles:

π

4
× f(

π

4
) +

π

4
× f(

π

2
) +

π

4
× f(

3π

4
) +

π

4
× f(π)

≈ π

4
× (1.4925+ 2.5708+ 3.0633+ 3.1416) = 8.0646

Based on figure 4.5, will the calculated area be an overestimate or an underestimate? Each
of the rectangles overshoots the function, so this will be an overestimate. What about using
the leftmost value of f(x) of each interval to determine the height of the rectangles? This
is shown in figure 4.6.
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3π
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R1 R2 R3 R4
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y

Figure 4.6: Four rectangle sections with heights determined by leftmost value of f(x) on
each interval
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Figure 4.7: sin x+x broken into 10 intervals using either the left or right value to determine
the height.

Notice that because f(0) = 0, the height of the first rectangle is zero, so we don’t see it on
the graph. To find the area of these rectangles:

π

4
× f(0) +

π

4
× f(

π

4
) +

π

4
× f(

π

2
) +

π

4
× f(

3π

4
)

≈ π

4
× (0+ 1.4925+ 2.5708+ 3.0633) = 5.5972

This is an underestimate. Therefore, the true value of the area under f(x) = sin x + x is
between 5.5972 and 8.0646. This is an awfully wide window! We can narrow our estimate
by increasing the number of intervals. Graphs of f(x)with 10 intervals are shown in figure
4.7.

The total area for the left-determined rectangles is ≈ 6.4248, and for the right-determined,
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it is ≈ 7.4118. Therefore, we have narrowed the range for the true area under the curve to
6.4248 < A < 7.4118. In general, as you increase the number of intervals, you get closer
to the true area.

For a strictly increasing function, the right sum will be an overestimate and the left sum
will be an underestimate of the true area under the curve. In the exercise below, you will
examine a strictly decreasing function:

Exercise 9

.Estimate the area under the graph of f(x) =
1
x from x = 1 to x = 2 using four rect-
angles and right endpoints. Sketch the
graph and the rectangles. Is your es-
timate an overestimate or an underesti-
mate? Repeat using left endpoints.

Answer on Page 41

Working Space

You should have found that for the strictly decreasing function f(x) = 1
x , the right-

determined sum is an underestimate, while the left-determined sum is an overestimate.
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4.3 The Riemann Sum

In the previous section, we estimated the area under functions by dividing the area into
approximating rectangles. This method is called a Riemann Sum. We will use a general
example to formally define the Riemann sum. Consider a generic function divided into
strips of equal width (shown in figure 4.8). The width of each strip is

∆x =
b− a

n

, where a is the left endpoint of the interval, b is the right endpoint of the interval, and n

is the number of strips. So, the right endpoints of the sections are

x1 = a+ ∆x

.
x2 = a+ 2∆x

. . . xn = a+ n∆x

As above, we can use the value of the function to determine the height of a rectangle
whose area approximates the area of the section. (E.g. for the ith strip, the width is ∆x

and the height is f(xi), see figure 4.9). So, the total area approximated by the rectangles
is

Rn = f(x1)∆x+ f(x2)∆x+ . . .+ f(xn)∆x

. This is the formal definition of the right Riemann sum. You can also take a left Riemann
sum or a midpoint Riemann sum, as discussed below.

4.3.1 Right Riemann Sums

As seen above, a right Riemann sum uses the right-most value of f(x) to determine the
height of the rectangle (an example is shown in figure 4.10). We will refer to the right
Riemann sum as Rn, where n is the number of intervals.

4.3.2 Left Riemann Sums

When taking a left Riemann sum, the height of the rectangle is determined by the value of
the function at the lower (left-most) x-value. See figure 4.11. We will refer to left Riemann
sums as Ln, where n is the number of intervals. So, the total area approximated by a Left
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a x1 x2
. . . xi−1 xi

. . . xn−1 b

A1 A2 Ai An
… … … …

x

y

Figure 4.8: A representative function divided into n strips of equal width

a x1 x2
. . . xi−1 xi

. . . xn−1 b

x

y

Figure 4.9: A representative function divided into n rectangles of equal width, with rect-
angle height determined by the right endpoint of the subinterval
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Figure 4.10: R4 for f(x) = 1
x
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Figure 4.11: L4 for f(x) = 1
x

Riemann sum is
Ln = f(x0)∆x+ f(x1)∆x+ . . .+ f(xn−1)∆x

.

4.3.3 Midpoint Riemann Sums

A midpoint Riemann sum uses the value of f(x) at the midpoint of the division to deter-
mine the height of the rectangle, as shown in figure 4.12. We will refer to the midpoint
Riemann sum as Mn, where n is the number of intervals. So, the total area approximated
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Figure 4.12: M4 of f(x) = 1
x

by the rectangles is

Mn = f(
x0 + x1

2
)∆x+ f(

x1 + x2
x

)∆x+ . . .+ f(
xn−1 + xn

2
)∆x

.

4.3.4 Riemann sum sigma notation

As you may recall, mathematicians use sigma notation to concisely express sums, such
as Riemann sums. We can rewrite the definition of a right Riemann sum in sigma notation:

n∑
i=1

f(xi)∆x

where n is the number of subintervals. So, the actual area under the curve is the limit as
n approaches ∞ of the above sum. Let’s apply this by writing a sum that represents the
area, A, of the region that lies between the x-axis and the function f(x) = e−x from x = 0

to x = 2.

First, we find an expression for ∆x:

∆x =
2− 0

n
=

2

n

Recall that xi = a + i∆x. Since a (the beginning of the interval) = 0, then the general
expression for xi in this case is 0+ i× 2

n = 2i
n . Substituting our expressions for ∆x and xi

into the sum formula, we see that:
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A = lim
n→∞

n∑
i=1

e
−2i
n

2

n

We can also interpret a sum as the area under a specific function. Take the expression:

lim
n→∞

n∑
i=1

π

n
sin iπ

n

There are two expressions in the sum: π
n and sin iπ

n . It makes sense that ∆x = π
n and

f(xi) = sin iπ
n . Because ∆x = b−a

n = π
n , it follows that the interval of the area has a width

of π. We will need to examine the other expression, sin iπ
n , to determine an exact window.

Since f(xi) = sin iπ
n , it follows that the function we are looking for is a sine function. Fur-

ther, the expression for xi = iπ
n . Recall that xi = a+i∆x, where a is the left-most boundary

of the interval. Substituting what we have found already, we see that:

xi = a+ i
π

n
=

iπ

n

which implies that a = 0. Since we have established the interval is π wide, we can infer
that b = π. Therefore, the limit limn→∞∑n

i=1
π
n sin iπ

n is equal to the area under f(x) = sin x

from x = 0 to x = π.

Exercise 10

.Use the formal definition of a Right Rie-
mann sum to write a limit of a sum that
is equal to the total area under the graph
of f on the specified interval. Do not
evaluate the limit.

1. f(x) = 2x
x2+1

, 1 ≤ x ≤ 3

2. f(x) = x2 +
√
1+ 2x, 4 ≤ x ≤ 7

3. f(x) =
√
sin x, 0 ≤ x ≤ π

Answer on Page 42

Working Space
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Event Time (s) Velocity (ft/s)
Launch 0 0

Begin roll maneuver 10 185
End roll maneuver 15 319
Throttle to 89% 20 447
Throttle to 67% 32 742
Throttle to 104% 59 1325

Maximum dynamic pressure 62 1445
Solid rocket booster separation 125 4151

Figure 4.13: Speed of Endeavour from launch to booster separation

Exercise 11

.Use the formal definition of a Right Rie-
mann sum to find a region on a graph
whose are is equal to the given limit. Do
not evaluate the limit.

1. limn→∞∑n
i=1

3
n

√
1+ 3i

n

2. limn→∞∑n
i=1

π
4n tan iπ

4n

Answer on Page 42

Working Space

4.3.5 Real-world Riemann Sums

Sometimes we are working from real data, and the intervals aren’t evenly spaced. That’s
ok! We can still use Riemann sums to make an estimate. Consider the velocity data from
the 1992 launch of the space shuttle Endeavour, shown in tabular form in figure 4.13:

We can use a Riemann sum to estimate how far the space shuttle traveled in the first 62
seconds of flight. First, let’s visualize our data (see figure 4.14). There are 7 time intervals
from the data, but we only need the first 6. We can find a reasonable range for the distance
the space shuttle travels by finding the left and right Riemann sums. Remember: Becayse
this data is strictly increasing, the left sum will be our lower bound and the right sum
will be our upper bound.

First, we’ll find L6. The width of the first interval is 10 seconds (10−0 = 10) and the height
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Figure 4.14: Plot of time, velocity data for the Endeavour

of the rectangle will be v(0) = 0. Calculations for the additional intervals are shown in
the table:

Interval Width(s) Height(ft/s) Area(ft)
1 10 0 0
2 5 185 925
3 5 319 1595
4 12 447 5364
5 27 742 20034
6 3 1325 3975

Adding the areas, we find the lower limit for the distance traveled is 31,893 feet. We can
determine the upper bound, R6, in a similar manner:

Interval Width(s) Height(ft/s) Area(ft)
1 10 185 1850
2 5 319 1595
3 5 447 2235
4 12 742 8904
5 27 1325 35775
6 3 1445 4335

Adding the areas, we find the upper limit for the distance traveled is 54,694 feet. Therefore,
the Endeavour traveled between 31,893 and 54,694 feet during the first 62 seconds of this
flight.
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4.4 Code for a Riemann Sum

You can create a program that automatically calculates a Riemann sum. Create a file called
riemann.py and type the following into it:

import matplotlib.pyplot as plt
import sys
import math

from matplotlib.table import Rectangle

# Did the user supply two arguments?
if len(sys.argv) != 3:

print(f"Usage: {sys.argv[0]} <stop> <divisions>")
print(f"Numerically integrates 1/x from 1 to <stop>.")
print(f"Calculates the value of 1/x at <divisions> spots in the range.")
exit(1)

# Check to make sure the number of divisions is greater than zero?
divisions = int(sys.argv[2])
if divisions <= 0:

print("ERROR: Divisions must be at least 1.")
exit(1)

# Is the stopping point after 1.0?
stop = float(sys.argv[1])
if stop <= 1.0:

print("ERROR: Stopping point must be greater than 1.0")
exit(1)

start = 1.0
step_size = (stop - start)/divisions

print(f"Step size is {step_size:.5f}.")
x_values = []
y_values = []
sum = 0.0
for i in range(divisions):

current_x = start + i * step_size
current_y = 1.0/current_x
area = current_y * step_size
print(f"{i}: 1 / {current_x:.3f} = {current_y:4f}, area of rect = {area:8f} ")

x_values.append(current_x)
y_values.append(current_y)
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sum += area
print(f"\tCumulative={sum:.3f}, ln({current_x:.3f})={math.log(current_x):.3f}")

print(f"Numerical integration of 1/x from 1.0 to {stop:.4f} is {sum:.4f}")
print(f"The natural log of {stop:.4f} is {math.log(stop):.4f}")

# Create data for the smooth 1/x line
SMOOTH_DIVISIONS = 200
smooth_start = start - 0.15
smooth_stop = stop + 1.0
smooth_step = (smooth_stop - smooth_start)/SMOOTH_DIVISIONS
smooth_x_values = []
smooth_y_values = []
for i in range(SMOOTH_DIVISIONS):

current_x = smooth_start + i * smooth_step
current_y = 1.0/current_x
smooth_x_values.append(current_x)
smooth_y_values.append(current_y)

# Put it on a plot
fig, ax = plt.subplots()
ax.set_xlim((smooth_x_values[0], smooth_x_values[-1]))
ax.set_ylim((0, smooth_y_values[0]))
ax.set_title("Riemann Sums for 1/x")

# Make the Riemann rects
for i in range(divisions):

current_x = x_values[i]
next_x = current_x + step_size
current_y = y_values[i]
rect = Rectangle((current_x, 0), step_size, current_y, edgecolor="green", facecolor="lightgreen")
ax.add_patch(rect)

# Make the true 1/x curve
ax.plot(smooth_x_values, smooth_y_values, c="k", label="1/x")

# Show the user
plt.show()

This program will calculate and display a graph of the left Riemann sum of 1
x from 1 to

the provided stop value with the indicated number of subintervals. When you run it, you
will see a graph in a new window and something like this in the terminal:

Step size is 0.40000.
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0: 1 / 1.000 = 1.000000, area of rect = 0.400000
Cumulative=0.400, ln(1.000)=0.000

1: 1 / 1.400 = 0.714286, area of rect = 0.285714
Cumulative=0.686, ln(1.400)=0.336

2: 1 / 1.800 = 0.555556, area of rect = 0.222222
Cumulative=0.908, ln(1.800)=0.588

3: 1 / 2.200 = 0.454545, area of rect = 0.181818
Cumulative=1.090, ln(2.200)=0.788

4: 1 / 2.600 = 0.384615, area of rect = 0.153846
Cumulative=1.244, ln(2.600)=0.956

5: 1 / 3.000 = 0.333333, area of rect = 0.133333
Cumulative=1.377, ln(3.000)=1.099

6: 1 / 3.400 = 0.294118, area of rect = 0.117647
Cumulative=1.495, ln(3.400)=1.224

7: 1 / 3.800 = 0.263158, area of rect = 0.105263
Cumulative=1.600, ln(3.800)=1.335

8: 1 / 4.200 = 0.238095, area of rect = 0.095238
Cumulative=1.695, ln(4.200)=1.435

9: 1 / 4.600 = 0.217391, area of rect = 0.086957
Cumulative=1.782, ln(4.600)=1.526

Numerical integration of 1/x from 1.0 to 5.0000 is 1.7820
The natural log of 5.0000 is 1.6094

Exercise 12

.Use the Python program you created to
find L10, L50, L100, L500, L1000, and L5000
for the function 1

x from x = 1 to x = 5.
What do you notice about the results?

Answer on Page 43

Working Space

4.5 Riemann Sum Practice
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Exercise 13

.

t (hours) 4 7 12 15
R(t) (L/hr) 6.5 6.2 5.9 5.6

A tank contains 50 liters of water after 4
hours of filling. Water is being added
to the tank at rate R(t). The value of
R(t) at select times is shown in the ta-
ble. Using a right Riemann sum, esti-
mate the amount of water in the tank af-
ter 15 hours of filling.

Answer on Page 43

Working Space

Exercise 14

.Let f(x) = x − 2 ln x. Estimate the area
under f from x = 1 to x = 5 using four
rectangles and the value of f at the mid-
point of each interval. Sketch the curve
and your approximating rectangles.

Answer on Page 43

Working Space
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Exercise 15

.A graph of a car’s velocity over a pe-
riod of 60 seconds is shown. Estimate
the distance traveled during this period.

10 20 30 40 50 60

40

80

120

160

200

240

t (seconds)

v (km/hr)

Answer on Page 44

Working Space



Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 15)

Since we are finding the antiderivative of sin x, we will define f(x) = sin x. We are looking
for a F, such that F ′(x) = sin x. The derivative of cos x is − sin x 6= f(x). However, the
derivative of − cos x = sin x = f(x). Since d

dx [− cos x] = sin x, the antiderivative of sin x is
− cos x.

Answer to Exercise 2 (on page 17)

First, we will find v(t) by taking the antiderivative of a(t) and using the initial condition
v(0) = −6: ∫

6t+ 4 , dt = 3t2 + 4t+ C = v(t)

v(0) = 3(0)2 + 4(0) + C = −6

C = −6

Therefore, the velocity function is v(t) = 3t2 + 4t− 6. Next, we repeat the process to find
s(t): ∫

3t2 + 4t− 6 , dt = t3 + 2t2 − 6t+ C = s(t)

s(0) = (0)3 + 2(0)2 − 6(0) + C = 9

C = 9

Therefore, the position function is s(t) = t3 + 2t2 − 6t+ 9.

Answer to Exercise 3 (on page 18)

The antiderivative of sin x is − cos x; therefore, the general solution is f(x) = −2 cos x+C.
We use the given condition, f(π) = 1 to find C:

f(π) = −2 cosπ+ C = 1

C = 1+ 2 cosπ = 1+ 2(−1) = −1

39
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Therefore, the specific solution is f(x) = −2 cos x− 1

Answer to Exercise 4 (on page 18)

1. By the power rule, the antiderivative of x2 is 1
3x

3, the antiderivative of 2x is x2, and
the antiderivative of 4 is 4x. So the general antiderivative of f(x) is 1

3x
3+ x2− 4x+C

2. We can rewrite g(x) to more clearly see the powers of x. g(x) = x
2
3 + x

3
2 . Applying

the power rule, we find the general antiderivative of g(x) is 3
5x

5
3 + 2

5x
5
2 + C.

3. Recalling that the antiderivative of 1
x is ln |x|, the general antiderivative of h(x) is

1
5x− 2 ln |x|+ C

4. The antiderivative of sin θ is − cos θ and the antiderivative of sec2 θ is tan x. There-
fore, the general antiderivative of r(θ) is −2 cos θ− tan θ+ C

Answer to Exercise 5 (on page 18)

1. The antiderivative of sin θ is − cos θ, and the antiderivative of cos θ is sin θ. The
general form of f is f(θ) = − cos θ + sin θ + C. Substituting θ = π, we find that
f(π) = − cosπ + sinπ + C = 1 + 0 + C = 2, which implies C = 1. Therefore,
f(θ) = − cos θ+ sin θ+ 1.

2. The general antiderivative of f ′′ is f ′(x) = 4x3 + 3x2 − 4x + C1. We don’t have a
condition for f ′, so we continue to find f. The antiderivative of f ′ is f(x) = x4 + x3 −
2x2 + C1x + C2. We can find C2 with the condition f(0) = 4. f(0) = C2 = 4, so we
know f(x) = x4 + x3 − 2x2 + C1x + 4. Using the condition f(1) = 1, we find that
C1 = 3. Therefore, the specific solution is f(x) = x4 + x3 − 2x2 + 3x− 4.

Answer to Exercise 6 (on page 21)

The units on the x-axis are s, and the units on the y-axis are m
s2
. The area would then have

units of s× m
s2

= m
s . Based on the units, the area represents a net change in velocity. The

area above and below the axis are equal (4.5m
s ); therefore, the total area is 0. This means

the object’s starting and ending velocity are the same.
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Answer to Exercise 7 (on page 22)

The units of the area will be days × deaths
day = deaths. The area under the curve repre-

sents the total number of people who died of SARS in Singapore during the time period
represented [from March 1 to May 24 (if you took the time to do the math for the dates)].

Answer to Exercise 8 (on page 22)

2 4 6 8 10

2

4

6

8

10

t(h)

r(t)(L/h)

Based on the units, the area under the data would represent the total oil lost. One way to
estimate this area would be to create rectangles, but there are other valid methods.

Answer to Exercise 9 (on page 26)

Right-determined sum graph:

1 2

0.5

1

x

y



42 Chapter A. ANSWERS TO EXERCISES

The area of the right-determined sum is 0.25× (0.8+ 0.6667+ 0.5714+ 0.5) = 0.4202. This
is an underestimate of the actual area.
Left-determined sum graph:

1 2

0.5

1

x

y

The area of the left-determined sum is 0.25× (1+ 0.8+ 0.6667+ 0.5714) = 0.7595. This is
an overestimate of the actual area.

Answer to Exercise 10 (on page 31)

1. ∆x = 3−1
n = 2

n and xi = 1+i 2n = 1+ 2i
n . Substituting, we get limn→∞∑n

i=1

2(1+ 2i
n
)

(1+ 2i
n
)2+1

· 2n

2. ∆x = 7−4
n = 3

n and xi = 4 + 3i
n . Substituting, we get limn→∞∑n

i=1[(4 + 3i
n )

2 +√
1+ 2(4+ 3i

n )]
3i
n

3. ∆x = π−0
n = π

n and xi =
iπ
n . Substituting, we get limn→∞∑n

i=1

√
sin iπ

n
π
n

Answer to Exercise 11 (on page 32)

1. ∆x = 3
n , which implies b − a = 3. We could interpret

√
1+ 3i

n two ways: either
f(x) =

√
1+ x and xi =

3i
n or f(x) =

√
x and xi = 1+ 3i

n . In the first case, we can find
that a = 0 and b = 3, so the limit of the sum represents the area under f(x) =

√
1+ x

from x = 0 to x = 3. For the second case, we can find that a = 1 and b = 4, so the
limit of the sum represents the area under f(x) =

√
x from x = 1 to x = 4.

2. ∆x = π
4n , which implies b − a = π

4 . We can see that xi = iπ
4n , which implies a = 0

and therefore also that b = π
4 . Therefore, the limit of the sum represents the total

area under f(x) = tan x from x = 0 to x = π
4 .
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Answer to Exercise 12 (on page 36)

Number of Intervals Calculated Area
10 1.7820
50 1.6419
100 1.6256
500 1.6126
1000 1.6110
5000 1.6098

The area approaches the natural log of the endpoint, ln 5 ≈ 1.6094.

Answer to Exercise 13 (on page 37)

The volume of water will be the amount of water at 4 hours (50 liters) plus the area under
the graph of R(t) from t = 4 to t = 15. We will estimate this area with a right Riemann
sum. The approximate volume added from t = 4 to t = 7 is (7 − 4) ∗ (6.2) = 18.6 liters.
The approximate volume added from t = 7 to t = 12 is (12 − 7) ∗ (5.9) = 29.5 liters. The
approximate volume added from t = 12 to t = 15 is (15−12)∗(5.6) = 16.8 liters. Therefore,
the approximate total volume of water in the tank at t = 15 is 50+18.6+29.5+16.8 = 114.9

liters.

Answer to Exercise 14 (on page 37)

We will divide the area from x = 1 to x = 5 into four intervals at x = 2, x = 3, and x = 4.
Next, we will find the value of f(x) at the midpoint of each interval:

Interval Midpoint Value of f(x) at midpoint
1 1.5 ≈ 0.68907

2 2.5 ≈ 0.66742

3 3.5 ≈ 0.99447

4 4.5 ≈ 1.49185

Using the values in the table, we can make a possible sketch of f(x):
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f(x)

And we calculate the total area in the rectangles:

1× (0.68907+ 0.66742+ 0.99447+ 1.49185 = 3.84281

Answer to Exercise 15 (on page 38)

The question allows the student to choose the type of sum (left, right, or midpoint) and
the number of intervals. A possible solution is given, but there are many ways to answer
the question.
The tricky part here is noticing the units! In order to have a solution in kilometers, we
will need to convert km/hr to m/s when we calculate the areas. A possible solution is to
divide the graph into 6 intervals (one every 10 seconds) and use a right Riemann sum.

10 20 30 40 50 60

40

80

120

160

200

240

t (seconds)

v (km/hr)

We can use the graph to estimate the height of each rectangle. Some reasonable estimates
are f(10) = 130km

hr ≈ 36.1ms
s , f(20) = 180km

hr = 50m
s , f(30) = 210km

hr ≈ 58.3m
s , f(40) =

230km
hr ≈ 63.9m

s , f(50) = 235km
hr ≈ 65.3m

s , and f(60) = 240km
hr ≈ 66.7m

s . [Any values within
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±5 of the listed values are reasonable.] Noting that each interval is 10 sec wide and usingß
the estimates of f(x) listed, we can estimate that the distance traveled is 10 sec× (36.1m

s +
50m

s + 58.3m
s + 63.9m

s + 65.3m
s + 66.7m

s ) = 3403 meters.
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