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Chapter 1

Making a Map

Plotly is an open-source data visualization library for Python, R, and JavaScript. It allows
for interactive plots, including geographical maps. In this brief example, we will learn
how to create a simple annotated map using Plotly in Python.

To begin, you need to install Plotly. In Python, you can do this via pip:
pip i n s t a l l p l o t l y

Once installed, you can create a map with annotations as follows:
import p lo t l y . graph_ob jec ts as go

f i g = go . Figure ( data=go . Sca t t e rgeo (
lon = [ −75.789] ,
l a t = [45 . 4215] ,
t e x t = [ ’Ottawa ’ ] ,
mode = ’ t e x t ’ ,

))

f i g . update_layout (
t i t l e _ t e x t = ’Annotated Map with P lo t l y ’ ,
showlegend = False ,
geo = dic t (

scope = ’world ’ ,
p ro j e c t i on_ type = ’ azimuthal equal area ’ ,
showland = True ,
landcolor = ’ rgb (243 , 243 , 243) ’ ,
countrycolor = ’ rgb (204 , 204 , 204) ’ ,

) ,
)

f i g . show()

This code creates a world map and places a text annotation at the geographic coordinates
for Ottawa. The ‘go.Scattergeo‘ function is used to define the geographical scatter plot
(i.e., the annotation), while the ‘update_layout‘ function is used to define the appearance
and the properties of the map itself.

In this example, you can replace the latitude, longitude, and text with the values corre-
sponding to your desired location.
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Chapter 2

Introduction to Discrete
Probability

Before we begin talking about discrete probably, let’s address the word discrete vs discreet.
They sound exactly the same, but “discrete” means “individually separate and distinct”
and “discreet” means “careful about what other people know”. So, you might say, “You
can think of light as a continuous wave or as a blast of discrete particles.” And you might
say, “Please go get the box of doughnuts from the kitchen. Oh, and there are a lot of
hungry people in the house, so be discreet.”

When we are talking about probabilities, some problems deal with discrete quantities like
“What is the probability that I will throw these three dice and the numbers that roll face
up sum to 9?” There are also problems that deal with continuous properties like “What
is the probability that the next bird to fly over my house will weigh between 97.2 and 98.1
grams?” In this module, we are going to focus on the probability problems that deal with
discrete quantities.

Watch Khan Academy’s Introduction to Probability at https://youtu.be/uzkc-qNVoOk.

Let’s say that you have a cloth sack filled with 100 marbles; 99 are red and 1 is white. If
you reach in without looking and pull out one marble, you will probably pull out a red
one. We say that “There is a 1 in 100 chance that you would pull out a white marble.”
Or we can use percentages and say “There is a 1% chance that you will pull out a white
marble.” Or we can use decimals and say “There is a 0.01 probability that you will pull
out a white marble.” In probability, we often talk about the probability of certain events.
“Pulling out a white marble” is an event, and we can give it a symbol likeW. In equations,
we use p to mean “the probability of”. Thus, we can say “There is a 0.01 probability that
you will pull out a white marble,” which becomes the equation

p(W) = 0.01

2.1 The Probability of All Possibilities is 1.0

We know that you are either going to pull out a red marble or a white marble, so the
probability of a white marble being pulled and the probability of a red marble being
pulled must add up to 100%. Therefore, the odds of pulling out a red marble must be
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6 Chapter 2. INTRODUCTION TO DISCRETE PROBABILITY

99%, or 0.99. If we let the event “Pull out a red marble” be given by the symbol R, we can
say:

p(R) = 1.0− P(W) = 1.0− 0.01 = 0.99

Now, let’s say that you take a marble from the bag, then toss a coin. What is the probability
that you will pull a white marble, then get heads on the coin? It is the product of the two
probabilities: 0.01× 0.5 = 0.005, so one-half of a one percent chance. Do the probabilities
still sum to 1?

• White and Heads = 0.01× 0.5 = 0.005

• White and Tails = 0.01× 0.5 = 0.005

• Red and Heads = 0.99× 0.5 = 0.495

• Red and Tails = 0.99× 0.5 = 0.495

Yes, the probabilitites of all the possibilities still add to 1.

2.2 Independence

In the last section, you learned that the probability of two events (“Pulling a red marble
from the bag” and “Getting tails in a coin toss”) is the product of the probability of each
event: 0.99× 0.5 = 0.495.

This is true if the two events are independent; that is, the outcome of one doesn’t change
the probability of the other. The example we gave is independent: It doesn’t matter what
ball you pull from the bag, the outcome of the coin toss will always be 50-50.

What are two events that are not independent? The probability that a person is a profes-
sional basketball player and the probability that someone wears a shoe that is size 13 or
larger is not independent. After all, height is an advantage in basketball, and most tall
people also have large feet. So, if you know someone is a basketball player, they likely
wear large shoes.
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Exercise 1 Rolling Dice

.If you have three 6-sided dice to roll,
what is the probability that you will roll
a 5 on all three dice?

Answer on Page 25

Working Space

Exercise 2 Flipping Coins

.If you have five coins to flip, what is
the probability that at least one coin will
come up heads?

Answer on Page 25

Working Space

2.3 Why 7 is the most likely sum of two dice

If you roll two dice, the sum will be 2, 12, or any number in between. It is very tempting
to assume that the likelihood of any of those numbers is the same. In fact, the probability
of a 2 is 1

36 ≈ 3% and the probability of a 7 is 1
6 ≈ 17%. A 7 is six times more likely than

a 12! Why?

When you roll the first die, there are six possibilities with equal probability. When you
roll the second die, there are six possibilities with equal probability. So, there are a total
of 36 possible events with equal probabilities: 1 then 1, 1 then 2, 2 then 1, 1 then 3, 3 then
1, and so on. Only one of these (1 then 1) adds to 2. However, six of these sum to 7: 1
then 6, 6 then 1, 2 then 5, 5 then 2, 3 then 4, and 4 then 3. So, a 7 is six times more likely
than a 2.
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Here is the complete table:

Sum Count Probability
2 1,1 1 1/36
3 1,2 2,1 2 1/18
4 1,3 2,2 3,1 3 1/12
5 1,4 2,3 3,2 4,1 4 1/9
6 1,5 2,4 3,3 4,2 5,1 5 5/36
7 1,6 2,5 3,4 4,3 5,2 6,1 6 1/6
8 2,6 3,5 4,4 5,3 6,2 5 5/36
9 3,6 4,5 5,4 6,3 4 1/9
10 4,6 5,5 6,4 3 1/22
11 5,6 6,5 2 1/18
12 6,6 1 1/36

If you don’t believe these numbers, you could roll a pair of dice hundreds of times and
make a histogram. However, it would be a tedious and time-consuming task — just the
sort of thing that we make computers do for us.

2.4 Random Numbers and Python

You are going to write a simulation of rolling dice in Python. To do this, you will need
to generate a random sequence of numbers. The numbers will need to be in the range 1
to 6, and they will need to appear in the sequence with the same frequency. We say the
sequence will follow the uniform distribution. In other words, the probability is uniformly
distributed among the 6 possibilities.

Start python and try a few of the different ways to generate random numbers:
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> python3
>>> import random
>>> random.random() # Generates a random floating point number between 0 and 1
0.6840892758539989
>>> randrange(5) # Generates an integer in the range 0 - 4
2
>>> x = ['Rock', 'Paper', 'Scissors']
>>> random.choice(x) # Pick a random entry from the sequence
'Paper'
>>> x
['Rock', 'Paper', 'Scissors']
>>> random.shuffle(x) # Shuffle the order of the sequence
>>> x
['Scissors', 'Paper', 'Rock']
>>> a = list(range(30))
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 29]
>>> random.sample(a, 10) # Return 10 randomly chosen items from the sequence
[8, 7, 20, 9, 25, 13, 23, 11, 14, 16]

Clearly, Python has many ways to do things that look random. However, here’s the hidden
truth: they aren’t really random. The computer that you are using can’t generate random
data. Instead, it uses tricks to create data that looks random; we call this pseudorandom
data. Good pseudorandom algorithms are very important for cryptography and data
security.

What if you want real random data? Some companies that are using the decay of ra-
dioactive materials to generate real random data. You can pay to download it. For our
purposes, Python’s pseudorandom numbers are quite sufficient.

If we generate two random numbers in the range 1 through 6 and add them together, we
will have simulated rolling a pair of dice. Like this:

>>> a = random.randrange(6) + 1
>>> b = random.randrange(6) + 1
>>> a + b
8

First, let’s write a program that just rolls the dice 100 times and shows the result. Make a
file dice.py:

import random

roll_count = 100

dice.py
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for i in range(roll_count):
a = random.randrange(6) + 1
b = random.randrange(6) + 1
roll = a + b
print(f"Toss {i}: {a} + {b} = {roll}")

When you run it, you should see something like:

> python3 dice.py
Toss 0: 6 + 6 = 12
Toss 1: 4 + 4 = 8
Toss 2: 4 + 2 = 6
Toss 3: 4 + 6 = 10
Toss 4: 4 + 4 = 8
...
Toss 98: 5 + 2 = 7
Toss 99: 5 + 2 = 7

Nowwewant to count occurrences of each possible outcome. Let’s use an array of integers.
We will start with an array of zeros. When we roll a 3, we will add 1 to item 3 in the array.
(We can never roll a zero or a one, so those two entries will always be zero.)

import random

roll_count = 100

# Make an array containing 13 zeros
counts = [0] * 13

for i in range(roll_count):
a = random.randrange(6) + 1
b = random.randrange(6) + 1
roll = a + b
print(f"Toss i: a + b = roll")

# Increment the count for roll
counts[roll] += 1

print(f"Counts: counts")

When you run this, at the end you will see a count for each possible outcome:

...
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Toss 98: 3 + 2 = 5
Toss 99: 6 + 1 = 7
Counts: [0, 0, 2, 6, 16, 11, 13, 14, 11, 11, 6, 9, 1]

What was the count that we expected? For example, we expected to see a 2 about once
every 36 rolls, right? It might be nice to compare our count to what we expected. Add a
few more lines, and we are going to increase the number of rolls. You will probably want
to delete the line that prints each roll separately:

import random

# Can't ever be 0 or 1
p = [0.0, 0.0, 1/36, 1/18, 1/12, 1/9, 5/36, 1/6, 5/36, 1/9, 1/12, 1/18, 1/36]
roll_count = 1000

# Make an array containing 13 zeros
counts = [0] * 13

for i in range(roll_count):
a = random.randrange(6) + 1
b = random.randrange(6) + 1
roll = a + b

# Increment the count for roll
counts[roll] += 1

for i in range(2,13):
print(f"i appeared counts[i] times, expected p[i] * roll_count:.1f")

Now you should see something like:

2 appeared 39 times, expected 27.8
3 appeared 55 times, expected 55.6
4 appeared 84 times, expected 83.3
5 appeared 110 times, expected 111.1
6 appeared 160 times, expected 138.9
7 appeared 176 times, expected 166.7
8 appeared 124 times, expected 138.9
9 appeared 93 times, expected 111.1
10 appeared 87 times, expected 83.3
11 appeared 49 times, expected 55.6
12 appeared 23 times, expected 27.8

Whenever you are dealing with random numbers, the outcome will seldom be exactly
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what you expected. In this case, however, you should see that your predictions are pretty
close.

2.4.1 Making a bar graph

A bar graph is a nice way to look at quantities like this. Let’s make a bar graph that shows
the actual count and the expected count:

We need to describe the set of rectangles, to do this we will loop through each possible
roll (2 - 12) and put data in four lists for each:

import random
import matplotlib.pyplot as plt

# Can't ever be 0 or 1
p = [0.0, 0.0, 1/36, 1/18, 1/12, 1/9, 5/36, 1/6, 5/36, 1/9, 1/12, 1/18, 1/36]
roll_count = 1000

# Make an array containing 13 zeros
counts = [0] * 13

for i in range(roll_count):
a = random.randrange(6) + 1
b = random.randrange(6) + 1
roll = a + b
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# Increment the count for roll
counts[roll] += 1

# Gather data for bar chart
bar_width = 0.35
expected = []
actual_starts = []
expected_starts = []
labels = []
actual = []
for i in range(2,13):

expected.append(p[i] * roll_count)
actual.append(counts[i])
actual_starts.append(i - bar_width/2)
expected_starts.append(i + bar_width/2)
labels.append(i)

fig, ax = plt.subplots()

# Create the bars
ax.bar(actual_starts, actual, bar_width, label='Actual')
ax.bar(expected_starts, expected, bar_width, label='Expected')
ax.set_xticks(labels)

# Provide labels
ax.set_ylabel('Occurences')
ax.set_title('Dice Rolls')
ax.legend()
plt.show()





Chapter 3

Beginning Combinatorics

Discrete probability problems often include some counting. For example, we figured out
that there were 36 different ways the two dice could land, but all of them summed to some
number 2 through 12. How many different ways could three 8-sided dice come up? We
would need to count them, right? As the numbers get bigger, we will need some tricks so
that we don’t need to write them all down and count them one-by-one.

The branch of mathematics that focuses on tricks for counting is called combinatorics.

How can we be sure that there were 36 different configurations for the two 6-sided dice?
The first die could have come up as any one of six numbers. For each of those, the second
could have come up with any one of six numbers. Thus, the number of possibilities is
6× 6 = 36.

How many different configurations for three 8-sided dice? 8× 8× 8 = 83 = 512.

What about seven dice, each with 20 sides? There would be 207 = 1, 280, 000, 000 config-
urations. See, aren’t you glad we don’t need to write them all down?

Now, let’s say that six people (Anne, Brock, Carl, Dev, Edgar, and Fred) are going to run
a race. You have to make a plaque that says who won first place, who won second place,
and who won third. If you want to get all the possible plaques created beforehand, and
just pull the right one out as soon as the race ends, how many plaques would you need
to get engraved?

In this case, once someone has been given first place, they can’t win second or third place.
Thus, any of the 6 people can come in first, but once you have engraved that person’s
name on the plaque, there are only 5 people whose names can appear in second place.
Once you have engraved that name, there are only 4 people whose names can appear in
third place. Thus, you would get 6× 5× 4 = 120 plaques engraved.

What if the plaque includes all 6 places? Then you would need 6× 5× 4× 3× 2× 1 = 720

plaques engraved. We use this process often enough that we gave it a name. We say “I
need 6 factorial plaques engraved.” When we write a factorial, we use an exclamation
point:

6! = 6× 5× 4× 3× 2× 1 = 720

15
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We use the word “permutation” to mean a particular ordering. This rule says n items can
be ordered in n! ways. Thus, mathematicians actually say “If you have a list of n items
then we can generate n! different permutations of those items”.

In Python, there is a factorial function in the math library:

> python3
>>> import math
>>> math.factorial(6)
720

Handy, right? Now you don’t need to write a loop to calculate factorials.

Remember when we only wanted the first three names on the plaque? We can solve that
problem using factorials:

6× 5× 4 =
6× 5× 4× 3× 2× 1

3× 2× 1
=

6!

3!

This formulation makes it easy to figure out on any calculator with a “!” button.

The rule on this is to fill m positions from n items, it can be done this many ways:

n!

(n−m)!

3.0.1 Choose

Let’s say that there are 12 kids in a classroom, and you need a team of 4 to wipe down the
desks. How many different possible teams are there? You know that if you were giving
out four different positions (Like the race gave out 1st, 2nd, and 3rd), the answer would
be 12× 11× 10 or 12!/(12− 4)!.

However, once we pick the 4 people, we don’t care what order they are in, right? In this
problem, the team “Anne, Brad, Carl, and Don” is the same as the team “Carl, Don, Brad,
and Anne”.

Thus, the quantity 12!/(12 − 4)! is many times too large, because it counts each permu-
tation separately. To get the right number, we just divide this by the number of possible
permuations for a group of four people: 4!

That gets us our answer: How many different teams of four can be chosen from 12 people?
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12!

(12− 4)!4!
= 495

In combinatorics, we use this quantity a lot, so we have given it a name: choose

We have also given it a notation. “12 choose 4” is written like this:

(
12

4

)

Python has the math.comb function:

> python3
>>> import math
>>> comb(12, 4)
495





Chapter 4

Permutations and Sorting

In the previous chapter, we talked about permutations. If you have a list of four letters,
like [a, b, c, d], you can rearrange them in 4! ways:

a,b,c,d a,b,d,c a, d, b, c a, d, c, b a, c, b, d a, c, d, b
b,a,c,d b,a,d,c b, d, a, c b, d, c, a b, c, a, d b, c, d, a
c,b,a,d c,b,d,a c, d, b, a c, d, a, b c, a, b, d c, a, d, b
d,b,c,a d,b,a,c d, a, b, c d, a, c, b d, c, b, a d, c, a, b

You can make Python generate all the permutations for you:

from itertools import permutations
all_permutations = permutations(('a', 'b', 'c', 'd'))
for p in all_permutations:

print(p)

4.1 Notation

How do we define or write down a single permutation? You could say something like
“Swap the first and second items and swap the third and fourth items.” However, that
gets pretty difficult to read, so we usually write a permutation as two lines: the first line
is before the permutation and the second line is after. Like this:

(
1 2 3 4

2 1 4 3

)

We can also assign permutations to variables. For example, if we wanted the variable A

to represent “swapping the first and second item”, we would write this:

A =

(
1 2 3 4

2 1 3 4

)

And if we wanted B to represent “swapping the third and fourth item”, we would write:

19
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B =

(
1 2 3 4

1 2 4 3

)

Now, we can compose permutations together. For example, we might say:

B ◦A =

(
1 2 3 4

2 1 4 3

)

In other words, if we have the list [a, b, c, d] and we apply permutation A, followed by
permutation B, we get [b, a, d, c].

Important: Note that permutations are applied from right to left. B ◦A means “Applying
A and then B.” Why does this matter? Permutations are not necessarily commutative.
That is, if you have two permutations S and T , S ◦ T is not always the same as T ◦ S.

Also, note that “don’t change anything” is a permutation. We call it the identity permutation.
If you have four items, the identity permutation would be written:

I =

(
1 2 3 4

1 2 3 4

)

(We use a capital “I” for the identity.)

4.1.1 Challenge

Find an example of two permutations S and T , such that S ◦ T does not equal T ◦ S.

4.2 Sorting in Python

One of the common forms of permutation in software is sorting. Sorting is putting data
in a particular order. For example, in Python, if you had a list of numbers, you can sort it
in ascending order like this:

my_grades = [92, 87, 76, 99, 91, 93]
grades_worst_to_best = sorted(my_grades)

Do you want to sort backwards?
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my_grades = [92, 87, 76, 99, 91, 93]
grades_best_to_worst = sorted(my_grades, reverse=True)

Note that sorted makes a new list with the correct order. If you want to sort the array in
place, you can use the sort method:

my_grades = [92, 87, 76, 99, 91, 93]
my_grades.sort(reverse=True)

4.3 Inverses

Think for a second about this permutation:

S =

(
1 2 3 4

3 4 2 1

)

You could say this permutation shuffles a list. What is its inverse? That is, what is the
permutation that unshuffles the items back to where they were originally?

S−1 =

(
1 2 3 4

4 3 1 2

)

In other words, the original moved an item in the first spot to the third spot; the inverse
must move whatever was in the third spot back to the first spot.

(Notation note: In multiplication, b×b−1 = 1, so we use “to the negative one” to indicate
inverses in lots of places.)

Mechanically, how do you find the inverse? Flip the rows, then sort the columns using
the top number:(

1 2 3 4

3 4 2 1

)
flip → (

3 4 2 1

1 2 3 4

)
sort → (

1 2 3 4

4 3 1 2

)

Let’s say you have two permutations A and B. Permuting by B then A would look like
this:

C = A ◦ B
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If you know A−1 and B−1, what is C−1? You would undo-A, then undo-B, so

C−1 = B−1 ◦A−1

4.4 Cycles

Here is a permutation:

(
1 2 3 4 5

2 4 5 1 3

)

When this is applied, whatever is at 1 gets moved to 2, 2 gets moved to 4, and 4 gets
moved to 1. That is a cycle: 1 → 2 → 4, then it goes back to 1. It involves three locations,
so we say it is a 3-cycle.

There is another cycle in this permutation: 3 → 5, then it goes back to 3.

Because these cycles share no members, we say the cycles are disjoint.

Every permutation can be broken down into a collection of disjoint cycles.

T =

(
1 2 3 4 5

2 4 5 1 3

)
= (1 → 2 → 4)(3 → 5)

The first handy thing about this notation is that it makes it easy for us to describe the
inverse. We just run the cycles backward:

T−1 = (4 → 2 → 1)(5 → 3)

Starting with the list [a, b, c, d, e], let’s repeatedly apply the permutation T

Initial a, b, c, d, e
T applied d, a, e, b, c

T ◦ T applied b, d, c, a, e
T ◦ T ◦ T applied a, b, e, d, c

T ◦ T ◦ T ◦ T applied d, a, c, b, e
T ◦ T ◦ T ◦ T ◦ T applied b, d, e, a, c

T ◦ T ◦ T ◦ T ◦ T ◦ T applied a, b, c, d, e

This permutation results in six combinations, then it loops back on itself. The number of
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combinations is the least common multiple of all the cycles. In this case, there is a 3-cycle
and a 2-cycle. The least common multiple of 2 and 3 is 6.





Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 7)

probability of all 5’s = 1
6 ×

1
6 ×

1
6 =

(
1
6

)3
= 1

216 ≈ 0.0046

Answer to Exercise 1 (on page 7)

probability of at least one heads = 1.0 - probability of all tails = 1.0 −
(
1
2

)5
= 1.0 − 1

32 =
31
32 =≈ 0.97

25
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