
Contents

1 Making Web Requests with HTTP 3
1.1 HTTP Requests 3
1.2 Using HTTP with Web-Based APIs 3

2 Using and Creating APIs 5

3 Data Compression and Decompression 7
3.1 Data Compression and Decompression 7
3.2 Entropy 7
3.3 Entropy and Compression 7

4 Dealing with JSON and XML 9

A Answers to Exercises 11

Index 13

1





Chapter 1

Making Web Requests with
HTTP

The Hypertext Transfer Protocol (HTTP) is the protocol used for transmitting hypertext
over the World Wide Web. It is the foundation of any data exchange on the web, and it
is a protocol used for transmitting hypertext requests from clients (like a user’s browser)
to servers, which respond with the requested resources.

1.1 HTTP Requests

An HTTP request is made up of several components:

• Method: The HTTP method, like GET (retrieve data), POST (send data), PUT (up-
date data), DELETE (remove data), and so on.

• URL: The URL of the resource to retrieve, send data to, update or delete.

• Headers: Additional information about the request or response, like the content
type of the body.

• Body: The body of the request, used when sending data in POST or PUT requests.

1.2 Using HTTP with Web-Based APIs

Software developers often use HTTP to interact with web-based APIs. An Application
Programming Interface (API) is a set of rules that allows programs to talk to each other.
The developer creates the API on the server and allows the client to talk to it.

When a developer makes a request to an API endpoint, they’re asking the server to either
send them some data or receive some data from them. The response from the server will
often be in a format like JSON or XML, which the developer can then use in their own
application.

For example, a developermight make a GET request to ‘https://api.example.com/users‘
to retrieve a list of all users. The server would respond with a list of users in a format like
JSON.

3





Chapter 2

Using and Creating APIs

As a software engineer, you are likely familiar with building applications that interact
with various external services and data sources. One of the most common methods for
communication and integration is through HTTP APIs (Application Programming Inter-
faces). HTTP APIs provide a standardized way for applications to exchange data and
functionality over the internet.

This chapter will introduce you to the world of HTTP APIs and explore how you can
leverage them in your software development projects. We will cover the fundamental
concepts, techniques, and best practices for effectively working with HTTP APIs.

An HTTP API allows two software systems to communicate and exchange information us-
ing the Hypertext Transfer Protocol (HTTP). It enables your application to make requests
to an API server and receive responses in a structured format, such as JSON (JavaScript
Object Notation) or XML (eXtensible Markup Language).

Using HTTP APIs offers a range of benefits for software engineers. It allows you to lever-
age external services and data sources, enabling your application to access functionality
or retrieve valuable information from third-party systems. This opens up opportunities
for integration with popular platforms, social media networks, payment gateways, geolo-
cation services, and much more.

Throughout this chapter, we will explore various aspects of working with HTTP APIs,
including:

• API endpoints and methods: Understanding how to interact with an API involves
identifying the available endpoints and the supported methods, such as GET, POST,
PUT, DELETE, and so on. We will discuss how to construct API requests and handle
different response formats.

• Authentication and authorization: Many APIs require authentication to ensure se-
cure access and protect sensitive data. We will delve into different authentication
mechanisms, including API keys, tokens, OAuth, and other authentication protocols
commonly used in API integrations.

• Request parameters and payloads: APIs often accept additional parameters or pay-
loads to customize the request or send data for processing. We will explore how to
pass query parameters, request headers, and request bodies when interacting with
APIs.

• Error handling and status codes: Learning how to handle errors and interpret status

5



6 Chapter 2. USING AND CREATING APIS

codes returned by APIs is crucial for building robust and resilient applications. We
will discuss common status codes and best practices for handling various scenarios
gracefully.

• Rate limiting and throttling: Many APIs impose restrictions on the number of re-
quests you can make within a given timeframe to prevent abuse and ensure fair
usage. We will cover techniques for handling rate limiting and implementing effi-
cient strategies to manage API quotas.

• API documentation and testing: Proper documentation is essential for understand-
ing an API’s capabilities, endpoints, and expected behavior. We will explore how
to read and interpret API documentation, as well as techniques for testing and val-
idating API integrations.

By mastering the art of using HTTP APIs, you will expand your development toolkit and
gain the ability to seamlessly integrate your applications with external services, leverage
their functionalities, and build powerful, interconnected systems.

So, let’s dive into the world of HTTP APIs and uncover the endless possibilities they offer
for enhancing your software engineering projects.

FIXME talk about API keys, API requests, how it interacts with HTTP requests, why keys
should not be shared



Chapter 3

Data Compression and
Decompression

Data compression and decompression are fundamental techniques used in modern com-
puting, enabling efficient storage and transmission of data. The concept of entropy, bor-
rowed from the field of information theory, plays a crucial role in determining the com-
pression rate.

3.1 Data Compression and Decompression

Data compression is the process of reducing the amount of data needed to represent a
particular set of information. The two main types of data compression are lossless and
lossy. Lossless compression ensures that the original data can be perfectly reconstructed
from the compressed data, whereas lossy compression allows some loss of data for more
significant compression rates. Decompression is the reverse process of compression,
reconstructing the original data from the compressed format.

3.2 Entropy

In information theory, entropy measures the unpredictability or randomness of informa-
tion content. More specifically, it quantifies the expected value of the information con-
tained in a message. Lower entropy implies less randomness and more repetitiveness,
which in turn means the data can be compressed more.

3.3 Entropy and Compression

The role of entropy in data compression is fundamental. The entropy of a source of data
is the minimum number of bits required, on average, to encode symbols drawn from the
source. It serves as a lower bound on the best possible lossless compression rate.

For a source X with probability distribution p(x), the entropy H(X) is defined as:

H(X) = −
∑
x∈X

p(x) log2 p(x) (3.1)

7



8 Chapter 3. DATA COMPRESSION AND DECOMPRESSION

If the entropy of the data is high (i.e., the data is random and unpredictable), the potential
for compression is low. On the other hand, if the entropy is low (the data is predictable),
the data can be compressed to a smaller size.



Chapter 4

Dealing with JSON and XML

9





Appendix A

Answers to Exercises

11



12 Chapter A. ANSWERS TO EXERCISES



Index

data compression, 7

entropy, 7

HTTP, 3, 5

json, 9

lossless, 7
lossy, 7

Web APIs, 5

xml, 9

13


	Making Web Requests with HTTP
	HTTP Requests
	Using HTTP with Web-Based APIs

	Using and Creating APIs
	Data Compression and Decompression
	Data Compression and Decompression
	Entropy
	Entropy and Compression

	Dealing with JSON and XML
	Answers to Exercises
	Index

