
Contents

1 Data Tables and pandas 3
1.1 Data types 3
1.2 pandas 4
1.3 Reading a CSV with pandas 4
1.4 Looking at a Series 5
1.5 Rows and the index 6
1.6 Changing data 7
1.7 Derived columns 9

2 Data tables in SQL 11
2.1 Using SQL from Python 14

3 Representing Natural Numbers 17
3.1 Base-10 (Decimal) 17
3.2 Base-2 (Binary) 18

3.2.1 Bits and Bytes 19
3.3 Base-16 (Hexadecimal) 20

3.3.1 Hex Color Codes 21
3.4 Base-8 (Octal) 21

3.4.1 Why Octal Matters 21

A Answers to Exercises 23

Index 25

1

Chapter 1

Data Tables and pandas

Much of the data that you will encounter in your career will come to you as a table. Some
of these tables are spreadsheets, some are in relational databases, and some will come to
you as CSV files.

Typically, each column will represent an attribute (like height or acreage) and each row
will represent an entity (like a person or a farm). You might get a table like this:

property_id bedrooms square_meters estimated_value
7927 3 921.4 $ 294,393
9329 2 829.1 $ 207,420

In most casess, one of the columns is guaranteed to be unique. We call this the primary
key. In this table, property_id is the primary key; every property has one, and no two
properties have the same property_id.

1.1 Data types

Each column in a table has a type, and these usually correspond pretty nicely with types
in Python.

Here are some common datatypes:

Type Python type Example
Integer int 910393
Float float -23.19
String string 'Fred'

Boolean bool False
Date datetime.date 2019-12-04

Timestamps datetime.datetime 2022-06-10T14:05:22Z

Sometimes it is OK to have values missing. For example, if you had a table of data about
employees, maybe one of the columns would be retirement — a date that tells you when
the person retired. People who had not yet retired would have no value in this column.
We would say that they have null for retirement.

Sometimes there are constraints on what values can appear in the column. For example,
if the column were height, it would make no sense to have a negative value.

Sometimes a column can only be one of a few values. For example, if you ran a bike rental
shop, each bicycle’s status would be “available”, “rented”, or “broken”. Any other values

3

4 Chapter 1. DATA TABLES AND PANDAS

in that column would not be allowed. We often call these columns categorical.

1.2 pandas

The Python community works with tables of data very often, so it created the pandas
library for reading, writing, and manipulating tables of data.

When working with tables, you sometimes need to go through them row-by-row. How-
ever, for large datasets, this is very slow. pandas makes it easy (and very fast) to say
things like “Delete every row that doesn’t have a value for height” instead of requiring
you to step through the whole table.

In pandas, there are two datatypes that you use a lot:

• a Series is a single column of data.

• a DataFrame is a table of data: it has a Series for each column.

In the digital resources, you will fined bikes.csv. If you look at it in a text editor, it will
start like this:

bike_id,brand,size,purchase_price,purchase_date,status
5636248,GT,57,277.99,1986-09-07,available
4156134,Giant,56,201.52,2005-01-09,rented
7971254,Cannondale,54,292.25,1978-02-28,available
3600023,Canyon,57,197.62,2007-02-15,broken

The first line is a header; it tells you the name of each column. Next, the each bike is
represented by values which are separated by commas. (Thus the name: CSV stands for
“Comma-Separated Values”.)

1.3 Reading a CSV with pandas

Let’s make a program that reads bikes.csv into a pandas dataframe. Create a file called
report.py in the same folder as bikes.csv.

First, we will read in the csv file. pandas has one series that acts as the primary key; it
calls this one the index. When reading in the file, we will tell it to use the bike_id as the
index series.

If you ask a dataframe for its shape, it returns a tuple containing the number of rows and
the number of columns. To confirm that we have actually read the data in, let’s print those

Section 1.4 LOOKING AT A SERIES 5

numbers. Add these lines to report.py:

import pandas as pd

Read the CSV and create a dataframe
df = pd.read_csv('bikes.csv', index_col="bike_id")

Show the shape of the dataframe
(row_count, col_count) = df.shape
print(f"*** Basics ***")
print(f"Bikes: {row_count:,}")
print(f"Columns: {col_count}")

Build it and run it. You should see something like this:

*** Basics ***
Bikes: 998
Columns: 5

Note that your table actually has six columns. The index series is not included in the
shape.

1.4 Looking at a Series

Let’s get the lowest, the highest, and the mean purchase price of the bikes. The purchase
price is a series, and you can ask the dataframe for it. Add these lines to the end of your
program:

Purchase price stats
print("\n*** Purchase Price ***")
series = df["purchase_price"]
print(f"Lowest:{series.min()}")
print(f"Highest:{series.max()}")
print(f"Mean:{series.mean():.2f}")

Now when you run it, you will see a few additional lines:

*** Purchase Price ***
Lowest:107.37
Highest:377.7
Mean:249.01

6 Chapter 1. DATA TABLES AND PANDAS

What are all the brands of the bikes? Add a few more lines to your program that shows
how many of each brand:

Brand stats
print("\n*** Brands ***")
series = df["brand"]
series_counts = series.value_counts()
print(f"{series_counts}")

Now when you run it, your report will include the number of bikes for each brand from
most to least common:

*** Brands ***
Canyon 192
BMC 173
Cannondale 170
Trek 166
GT 150
Giant 147
Name: brand, dtype: int64

value_counts returns a Series. To format this better, we need to learn about accessing
individual rows in a series.

1.5 Rows and the index

In an array, you ask for data using an the location (as an int) of the item you want. You
can do this in pandas using iloc. Add this to the end of your program:

First bike
print("\n*** First Bike ***")
row = df.iloc[0]
print(f"{row}")

When you run it, you will see the attributes of the first row of data:

*** First Bike ***
brand GT
size 57
purchase_price 277.99
purchase_date 1986-09-07

Section 1.6 CHANGING DATA 7

status available
Name: 5636248, dtype: object

Notice that the data coming back is actually another series.

The last line says that the name (the value for the index column) for this row is 5636248.
In pandas, we usually use this to locate particular rows. For example, there is a row with
bike_id equal to 2969341. Let’s ask for one entry from the

print("\n*** Some Bike ***")
brand = df.loc[2969341]['brand']
print(f"brand = {brand}")

Now, you will see the information about that bike:

*** Some Bike ***
brand = Cannondale

pandas has a few different ways of getting to that value. All of these get you the same
thing:

brand = df.loc[2969341]['brand'] # Get row, then get value
brand = df['brand'][2969341] # Get column, then get value
brand = df.loc[2969341, 'brand'] # One call with both row and value

1.6 Changing data

One of your attributes needs cleaning up. Every bike should have a status, and it should
be one of the following strings:”available”, “rented”, or “broken”. Get counts for each
unique value in status:

print("\n*** Status ***")
series = df["status"]
missing = series.isnull()
print(f"{missing.sum()} bikes have no status.")
series_counts = series.value_counts()
for value in series_counts.index:

print(f"{series_counts.loc[value]} bikes are \"{value}\"")

This will show you:

8 Chapter 1. DATA TABLES AND PANDAS

*** Status ***
7 bikes have no status.
389 bikes are "rented"
304 bikes are "broken"
296 bikes are "available"
1 bikes are "Flat tire"
1 bikes are "Available"

Right away, we can see two easily fixable problems: Someone typed “Available” instead
of “available”. Right after you read the CSV in, fix this in the data frame:

mask = df['status'] == 'Available'
print(f"{mask}")
df.loc[mask, 'status'] = 'available'

When you run this, you will see that the mask is a series with bike_id as the index
and False or True as the value, depending on whether the row’s status was equal to
“Available”.

When you use loc with this sort of mask, you are saying “Give me all the rows for which
the mask is True.” So, the assignment only happens in the one problematic row.

Let’s get rid of the mask variable and do the same for turning Flat tire into Broken:

df.loc[df['status'] == 'Available', 'status'] = 'available'
df.loc[df['status'] == 'Flat tire', 'status'] = 'broken'

Now those problems are gone:

7 bikes have no status.
389 bikes are "rented"
305 bikes are "broken"
297 bikes are "available"

What about the rows with no values for status? If we were pretty certain that the bikes
were available, we could just set them to ’available’:

missing_mask = df['status'].isnull()
df.loc[missing_mask, 'status'] = 'available'

Or maybe we would print out the IDs of the bikes so that we could go look for them:

Section 1.7 DERIVED COLUMNS 9

missing_mask = df['status'].isnull()
missing_ids = list(df[missing_mask].index)
print(f"These bikes have no status:{missing_ids}")

However, let’s just keep the rows where the status is not null:

missing_mask = df['status'].isnull()
df = df[~missing_mask]

At the end of your program, write out the improved CSV:

df.to_csv('bikes2.csv')

Run the program and open bikes2.csv in a text editor.

1.7 Derived columns

Let’s say that you want to add a column with age of the bicycle in days:

bike_id,brand,size,purchase_price,purchase_date,status,age_in_days
5636248,GT,57,277.99,1986-09-07,available,13061
4156134,Giant,56,201.52,2005-01-09,rented,6362
7971254,Cannondale,54,292.25,1978-02-28,available,16174

Your first problem is that the purchase_date column looks like a date, but really it is a
string. So, you need to convert it to a date. You can do this by applying a function to
every item in the series:

df['purchase_date'] = df['purchase_date'].apply(lambda s: datetime.date.fromisoformat(s))

(With pandas, there is often more than one way to do things. pandas has a to_datetime
function that converts every entry in a sequence to a datetime object. Here is another
way to convert the string column in to a date column:

df['purchase_date'] = pd.to_datetime(df['purchase_date']).dt.date

You can look up dt and date if you are curious.)

Now, we can use the same trick to create a new column with the age in days:

today = datetime.date.today()

10 Chapter 1. DATA TABLES AND PANDAS

df['age_in_days'] = df['purchase_date'].apply(lambda d: (today - d).days)

When you run this, the new bikes.csv will have an age_by_date column.

Chapter 2

Data tables in SQL

Most organizations keep their data as tables inside a relational database management
system (compared to pandas, CSV, or spreadsheets). Developers talk to those systems
using a language called SQL (“Structured Query Language”). Some relational database
managers are pricey products you may have heard of before, such as Oracle or Microsoft
SQL Server. Some are free, such as PostgreSQL or MySQL. These are server software that
client programs talk to over the companies network.1 There is a library, called sqlite,
that lets us create files that hold tables. We can use SQL to create, edit, and browse those
tables. sqlite is free, fast, and very easy to install. We will use sqlite instead of a networked
database management system.

If you look in your digital resources, you will find a file called bikes.db. We created this
file using sqlite, and now you will use sqlite to access it.

In the terminal, get to the directory where bikes.db lives. To open the sqlite tool on that
file:

> sqlite3 bikes.db

(If your system complains that there is no sqlite3 tool, you need to install sqlite. See this
website: https://sqlite.org/)

Please follow along: type each command shown here into the terminal and see what
happens.

We mostly run SQL commands in this tool, but there are a few non-SQL commands that
all start with a period. To see the tables and their columns, you can run .schema:

sqlite> .schema
CREATE TABLE bike (bike_id int PRIMARY KEY, brand text, size int,

purchase_price real, purchase_date date, status text);

That is the SQL command that we used to create the bike table. You can see all the
columns and their types.

1It should be noted that many notetaking and file storage applications allow you to run SQL-like queries to
search your files to meet certain criteria. For example, Obsidian, the Markdown notetaking app has a plugin
called Dataview, which allows you to run searches for notes matching certain metadata attribute criteria. See
more about this here: FIXME obsidian dv link

11

https://sqlite.org/

12 Chapter 2. DATA TABLES IN SQL

You want to see all the rows of data in that table?

sqlite> select * from bike;
4997391|GT|57|269.61|2009-05-03|rented
5429447|Cannondale|50|215.91|2002-02-17|broken
5019171|Trek|58|251.17|1985-07-11|rented
3000288|Cannondale|57|211.08|1993-01-05|broken
880965|GT|52|281.75|1995-08-02|available
...

You will see 1000 rows of data!

The SQL language is not case-sensitive, so you can also write it like this:

sqlite> SELECT * FROM BIKE;

Often, you will see SQL with just the SQL keywords in all caps:

sqlite> SELECT * FROM bike;

The semicolon is not part of SQL, but it tells sqlite that you are done writing a command
and that it should be executed.

SQL lets you choose which columns you would like to see. The asterisk (FIXME) used
above signifies all columns, and the bike_id, brand only gets the bike’s id and brand from
the dataframe:

sqlite> SELECT bike_id, brand FROM bike;
4997391|GT
5429447|Cannondale
5019171|Trek
3000288|Cannondale
...

Using WHERE, SQL lets you use conditions to decide which rows you would like to see,
and can be combined with the common operators AND, OR, and NOT:

sqlite> SELECT * FROM bike WHERE purchase_date > '2009-01-01' AND brand = 'GT';
4997391|GT|57|269.61|2009-05-03|rented
326774|GT|56|165.0|2009-06-27|available
264933|GT|52|302.43|2009-07-09|available
5931243|GT|55|173.56|2009-11-26|rented
4819848|GT|51|221.71|2009-12-11|rented

13

9347713|GT|52|232.32|2009-06-13|available
3019205|GT|58|262.94|2009-08-22|available

Using DISTINCT, SQL lets you get just one copy of each value:

sqlite> SELECT DISTINCT status FROM bike;
rented
broken
available

Busted
Flat tire
good
out
Rented

You can also edit these rows. For example, if you wanted every status that is Busted to
be changed to broken, you can use an UPDATE statement with a SET:

sqlite> UPDATE bike SET status='broken' WHERE status='Busted';
sqlite> SELECT DISTINCT status FROM bike;
rented
broken
available
Flat tire
good
out
Rented

You can insert new rows:

sqlite> INSERT INTO bike (bike_id, brand, size, purchase_price, purchase_date, status)
...> VALUES (1, 'GT', 53, 123.45, '2020-11-13', 'available');

sqlite> SELECT * FROM bike WHERE bike_id = 1;
1|GT|53|123.45|2020-11-13|available

Note that the bike_id here must be unique.

You can delete rows:

sqlite> DELETE FROM bike WHERE bike_id = 1;
sqlite> SELECT * FROM bike WHERE bike_id = 1;

14 Chapter 2. DATA TABLES IN SQL

To get out of sqlite, type .exit.

Exercise 1 SQL Query

.Execute an SQL query that returns the
bike_id (no other columns) of every Trek
bike that cost more than $300.

Answer on Page 23

Working Space

2.1 Using SQL from Python

The people behind sqlite created a library for Python that lets you execute SQL and fetch
the results from inside a python program.

Let’s create a simple program that fetches and displays the bike ID and purchase date of
every Trek bike that cost more than $300.

Create a file called report.py:

import sqlite3 as db

con = db.connect('bikes.db')
cur = con.cursor()

cur.execute("SELECT bike_id, purchase_date FROM bike WHERE purchase_price > 330 AND brand='Trek'")
rows = cur.fetchall()

today = datetime.date.today()
for row in rows:

print(f"Bike {row[0]}, purchased {row[1]}")

con.close()

When you execute it, you should see:

> python3 report.py
Bike 4128046, purchased 2007-08-06
Bike 7117808, purchased 1995-03-12

Section 2.1 USING SQL FROM PYTHON 15

Bike 7176903, purchased 1986-07-03
Bike 827899, purchased 2009-03-14
Bike 363983, purchased 1970-08-16

Chapter 3

Representing Natural Numbers

Natural numbers are positive whole numbers, such as 1, 2, 3, and so on. -5 is not a natural
number. π is not a natural number. 1

2 is not a natural number.

3.1 Base-10 (Decimal)

You are used to seeing the natural numbers represented in a base-10 Hindu-Arabic or the
Decimal numeral system. That is, when you see 2531 you think “2 thousands, 5 hundreds,
3 tens, and 1 one.” Rewritten, this is:

2× 103 + 5× 102 + 3× 101 + 1× 100

The radix is the amount of number of unique values a base can have before increasing the
amount of digits. For example, values 0, 1, 2, · · · , 8, 9 are all the values for base-10. Once
1 is added added to 9, we need to increase the amount of digits in a number.

In any Hindu-Arabic system, the location of the digits is meaningful: 101 is different from
110; the position of a number indicates it’s magnitude. Here are those numbers in Roman
numerals: CI and CX. Roman numerals didn’t have a symbol for zero at all.

The Hindu-Arabic system gave us really straightforward algorithms for addition and mul-
tiplication. For addition, you memorized the following table:

0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

When you multiplied two number together, you simply multiplied each pair of digits.
254× 26 might look like this:

17

18 Chapter 3. REPRESENTING NATURAL NUMBERS

2 5 4
× 2 6

2 4 6× 4

3 0 6× 5

1 2 6× 2

8 2× 4

1 0 2× 5

+ 4 2× 2

6 6 0 4

For multiplication, you memorized this table:

0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 10 12 14 16 18
3 0 3 6 9 12 15 18 21 24 27
4 0 4 8 12 16 20 24 28 32 36
5 0 5 10 15 20 25 30 35 40 45
6 0 6 12 18 24 30 36 42 48 54
7 0 7 14 21 28 35 42 49 56 63
9 0 9 18 27 36 45 54 63 72 81

3.2 Base-2 (Binary)

Binary, on the other hand, has only 2 digits it can have: 0 or 1. This kind of number
system is often used for electrical and computer systems because the values can only be
on or off.

Each digit in a binary number represents a power of 2, starting from the rightmost digit
(the least significant bit, or LSB). For example:

· · ·+ 23 + 22 + 21 + 20

For example,

10112 = (1 · 23) + (0 · 22) + (1 · 21) + (1 · 20) = 8+ 0+ 2+ 1 = 1110

1

1The subscripts represent the radix or base.

Section 3.2 BASE-2 (BINARY) 19

Because the radix is 2, the numbers increase differently:

0 : 0

1 : 1

2 : 10

3 : 11

4 : 100 → (22 · 1) + 0+ 0 = 4

5 : 101

6 : 110

7 : 111

8 : 1000

· · ·
15 : 1111 · · ·

Conversion from Decimal to Binary

To convert 1310 to binary, repeatedly divide by 2 and record the remainders until the
divisor reaches 0 or 1:

13÷ 2 = 6 remainder 16÷ 2 = 3 remainder 03÷ 2 = 1 remainder 11÷ 2 = 0 remainder 1

Reading from bottom to top, 1310 = 11012.

3.2.1 Bits and Bytes

A singular binary digit (0 or 1) is called a bit. A lightbulb, switch, or any sort of Boolean
value (true or false) can be represented as a bit. A single binary digit is called a bit. Eight
bits form a byte, which is a common unit of storage in computer systems:

1 byte = 8 bits

For example, the binary sequence 01001000 represents one byte of data.

We won’t go into the depths of it here, but here are the basics of computer architecture.
There are codes of 4-bit sequences that form up the memory. This can form the sections
of it into different data types:

Common Data Types in Memory

20 Chapter 3. REPRESENTING NATURAL NUMBERS

Data Type Size Bit Length Typical Use
Character 1 byte 8 bits ASCII characters, small integers
Integer 4 bytes 32 bits Whole numbers
Double 8 bytes 64 bits Decimal (floating-point) values

Strings are formed by listing characters in consecutive memory addresses such that they
are marked by a starting memory address and ending memory address.

8-bit binary numbers can be used to signify positive or negative numbers. The most
significant bit (MSB) will alter sign, causing the range to be [−27, 27 − 1]. If the byte is
negative (in terms of bits), invert each bit and add 1 to the inverted result. The other way
is to multiply the MSB by negative one, and add until the value is reached, as seen below.

−8510 = −1× 27 + 0× 26 + 1× 25 + 0× 24 + 1× 23 + 0× 22 + 1× 21 + 1× 20 = 10101011

Binary can be easy converted to Hexadecimal.

3.3 Base-16 (Hexadecimal)

Hexadecimal (from the latin hexa and deca for 16) is a representation of number with a
radix of 16. Digits are represented through numeric numbers 0-9 and A-F.

Counting to 16 in hex goes as follows:

1

2

3

. . .

9

A (decimal value 10)

B (decimal value 11)

C (decimal value 12)

D (decimal value 13)

E (decimal value 14)

F (decimal value 15)

Converting between binary and hexadecimal is easier because the hex radix (16 = 24) is
a power of the binary radix (21).

Section 3.4 BASE-8 (OCTAL) 21

It takes 4 binary digits to represent 1 hex digit: 15 = F

For example,
0x47 = 0100 01112

0xBD = 1011 11012

3.3.1 Hex Color Codes

Hex colors are represented by 6 hexadecimal digits, grouped as two each for red, green,
and blue (RGB). Each pair ranges from 00 (0 in decimal) to FF (255 in decimal),
allowing 256 shades per color channel. For example:

#FF0000 = Red, #00FF00 = Green, #0000FF = Blue

By mixing values, you can create millions of unique colors, e.g.:

#FFA500 = Orange, #800080 = Purple, #FFFFFF = White, #000000 = Black

There are 2563 = 16,777,216 possible color combinations in the RGB hex system. The
higher the red, green, or blue values are (closer to 255), the brighter the component
becomes and the overall color shifts closer to white. Conversely, the lower the values
are (closer to 0), the darker the component becomes and the overall color shifts closer to
black.

3.4 Base-8 (Octal)

Octal is another representation of radix 8. Digits range from 0 to 7, and the number of
digits increase the threshold is passed.

Just as in the above systems, octal increases by the radix —– powers of 8. For example,

1358 = (1× 82) + (3× 81) + (5× 80) = 64+ 24+ 5 = 9310

3.4.1 Why Octal Matters

Octal was historically important in computing because early computers often worked with
word sizes that were multiples of 3 bits (such as 12, 24, or 36). Since each octal digit

22 Chapter 3. REPRESENTING NATURAL NUMBERS

corresponds exactly to 3 binary digits, it was a convenient shorthand for binary values
before hexadecimal became more widespread. For example:

1101012 = 658

Even though modern systems mostly use hexadecimal, octal is still used in some contexts,
such as Unix file permissions (e.g., chmod 755).

Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 14)

SELECT bike_id FROM bike WHERE purchase_price > 330 AND brand='Trek'

23

24 Chapter A. ANSWERS TO EXERCISES

Index

base-2, 18
binary, 18

counting in, 19
bit, 19
byte, 19

computer architecture, 19

datatypes, 3

hexadecimal, 20

memory, 19

null, 3

Octal, 21

pandas, 4

signed bits, 20
SQL, 11
SQLite, 11

25

	Data Tables and pandas
	Data types
	pandas
	Reading a CSV with pandas
	Looking at a Series
	Rows and the index
	Changing data
	Derived columns

	Data tables in SQL
	Using SQL from Python

	Representing Natural Numbers
	Base-10 (Decimal)
	Base-2 (Binary)
	Bits and Bytes

	Base-16 (Hexadecimal)
	Hex Color Codes

	Base-8 (Octal)
	Why Octal Matters

	Answers to Exercises
	Index

