
Contents

1 Tackling Difficult Problems: Positive Semidefinite Matrices 3
1.1 NP Problems 3
1.2 A Past Approach: Minimizing Errors in Neural Networks 4
1.3 Positive Definite and Semidefinite Matrices 5
1.4 Identifying and Constructing a Positive Semidefinite Matrix 6
1.5 The Max Cut Problem 7
1.6 The Max Cut Problem Solved in Python 9

2 Data Tables and pandas 11
2.1 Data types 11
2.2 pandas 12
2.3 Reading a CSV with pandas 12
2.4 Looking at a Series 13
2.5 Rows and the index 14
2.6 Changing data 15
2.7 Derived columns 17

3 Data tables in SQL 19
3.1 Using SQL from Python 22

4 Representing Natural Numbers 25

A Answers to Exercises 27

Index 29

1

Chapter 1

Tackling Difficult Problems:
Positive Semidefinite Matrices

With all the computing power available today, you would think no problem would be
too difficult to tackle. However, this is not the case. There is a category of problems
called NP (nondeterministic polynomial time) whose solution is easy to verify, but whose
computation is difficult to perform. This is because there is no straightforward algorithm
and any brute-force method would take too much time. For these problems, all we can
do is to develop an efficient algorithm that can find a solution in a reasonable amount
of time. While the solution might not be the most optimal, the goal is to find the best
solution possible in a short time.

As you learn more about optimization techniques, you will come across many efficiency
algorithms that have been used throughout the years. In the 1990s, the field of optimiza-
tion changed with the discovery that algorithms based on semidefinite positive matrices
can achieve a higher efficiency than seen in the past. Today, there is an entire field of
programming called Semidefinite Programming that is based on the use of semidefinite
positive matrices.

First we will take a look at what some of the NP problems are. Next, we will describe the
intuition behind semidefinite positive matrices. We will take a look at one NP problem,
then introduce the Python module to use for solving these problems.

1.1 NP Problems

In the world of mathematics, easy problems are referred to as P, or polynomial time,
problems. In simple terms, this means the problem can be solved quickly, and it is easy to
verify that the solution is correct. Addition, subtraction, division, multiplication, square
roots, and matrix-vector multiplication are just a few examples. NP problems, as stated
in the introduction, can’t be computed in a reasonable amount of time, but solutions are
usually easy to verify. The game of Sudoku is one such example. It is easy to verify a
correct solution, but writing a generalized algorithm to solve any Sudoku game is an NP
problem.

NP problems show up in many other situations, such as:

• Designing robust communication networks

3

4 Chapter 1. TACKLING DIFFICULT PROBLEMS: POSITIVE SEMIDEFINITE MATRICES

• Scheduling tasks without conflicts

• Managing supply chains

• Detecting patterns in biological networks

• Figuring out subgroups in social networks

• Predicting the structure of proteins

For each of these , think of large scale problems for which there are many variables. A
cloud computing company that provides AI services to thousands of clients must be able
to schedule tasks efficiently and in a timely manner, as well as manage the power needed
for the computers and cooling the data center. Supply chain management is crucial to
figuring out how to pick up, transport, and distribute goods to help provide disaster
relief. Understanding protein structure is important for designing drugs that can tackle
specific conditions. All we can do for each of these situations is to find an optimal solution,
but we cannot find the definitive solution.

1.2 A Past Approach: Minimizing Errors in Neural Networks

When neural networks were first being developed to recognize things (faces, letters, music,
and so on), the goal was to calculate weights between network nodes that would minimize
the recognition error. The error space could be visualized as a surface of valleys and
hills. The lowest point would have the least error. The idea behind the iterative weight
calculations for training the network was to descend down the gradient until reaching the
low point. Without getting into the mathematics, you can see by looking at this figure that
there are two valleys. Some neural network training resulted in ending at a low point, but
not the lowest point. Wouldn’t it be great if you could formulate an optimization problem
so that you would be guaranteed to land at the lowest point? That is where semidefinite
programming can help.

Section 1.3 POSITIVE DEFINITE AND SEMIDEFINITE MATRICES 5

1.3 Positive Definite and Semidefinite Matrices

Unlike matrices that are defined by their content (such as identity matrix, zero matrix,
and diagonal matrix), positive definite and semidefinite matrices are characterized by the
result they produce. They have an analog in the scalar world, so let’s first look at that.
Let’s take the scalars a and b and treat them as vectors. ab is then the dot product. If
a > 0, then ab will take on the sign of b. If a < 0, then ab will have the opposite sign of
b. If you look at this in a graph, you can see that in the first case, ab stays on the same
side of the origin, but in the second case, ab flips

For a = [2], b = [4]

For a = [3], b = [−4]. the result of multiplication flips a to the other side of the graph.

The notion of “staying on the same side” is positive definite. The notion of flipping is
negative definite. Positive definite means that x > 0, so the result is a positive number.
Positive semidefinite means that x >= 0, so the result is a non-negative number.

If you can formulate a problem as a positive semidefinite matrix, then you automatically
constrain the result to the “same side.” This constraint results in higher algorithmic effi-
ciency.

Let’s look at the formal definition:

A matrix is positive definite if, and only if:

xTAx > 0, x, x 6= 0

A matrix is positive semidefinite, if, and only if:

xTAx ≥ 0

6 Chapter 1. TACKLING DIFFICULT PROBLEMS: POSITIVE SEMIDEFINITE MATRICES

Further, a positive semidefinite matrix had an important property. Its eigenvalues are ≥ 0.
The eigenvalues of a positive definite matrix are > 0.

Take the triplet (a, b, c) and the symmetric matrix:1 a b

a 1 c

b c 1

 ≥ 0

For what values of a, b, c is this matrix positive semidefinite? If you iterate through all
possible combinations of a,b,c, then compute the eigenvalues for each matrix, you will
find that some (like 0, 0, 0) result in a postive semidefinite matrix and some (like 2, 2, 2)
are not positive semidefinite. If you plot the set of triplets that result in a semidefinite
matrix, you will see an elliptope. This shape guarantees an optimal solution.

1.4 Identifying and Constructing a Positive Semidefinite Matrix

In the last section, you saw that being symmetric does not guarantee a positive semidef-
inite matrix. You also saw that a matrix of positive values does not guarantee a positive
semidefinite matrix. The only way to check for positive semidefinite is to calculate the
eigenvalues, which you learned in a previous workbook.

A surefire way to construct a positive semidefinite matrix is:

AAT

Section 1.5 THE MAX CUT PROBLEM 7

Exercise 1 Figuring out if a matrix is positive semidefinite

.Is this matrix positive definite? Show
your work. [

2 2

2 0

]

Answer on Page 27

Working Space

Exercise 2 Creating a positive semidefinite matrix

.Using any 3 by 3matrix, create a positive
semidefinite matrix.Then show it is posi-
tive semidefinite by calculating its eigen-
values. You can either compute this by
hand or using Python. In either case,
show your work.

Answer on Page 27

Working Space

1.5 The Max Cut Problem

A famous NP problem is Max Cut. Given a graph of interconnected nodes, cut the graph
to create two sets of nodes, such that the cut goes through as many edges as possible.
(You can’t cut an edge more than once.) Max Cut is important for binary classification in
machine learning, circuit design, statistical physics, and more. There is no algorithm that
will provide an exact solution. (If you could find one, you would be eligible to win a huge
prize from the Clay Mathematics Institute!) Instead, you will see how to approximate a
solution to this problem using a positive semidefinite matrix and a technique developed
by mathematicians Michel Goemans and David Williamson.

You won’t see all the complete details here, as this section is meant to be a quick intro-
duction to how you can apply positive semidefinite matrices.

Take this simple graph of five nodes and six edges. Each node in the graph will take on

8 Chapter 1. TACKLING DIFFICULT PROBLEMS: POSITIVE SEMIDEFINITE MATRICES

one of two values (1 or -1) to show which set they fall into after a cut is made. For any
two connected nodes, xi ∗ xj = 1 if xi = xj and −1 otherwise.

If you randomly assign 1 and −1 to the nodes, the chance of making the max cut is 0.5.
By using semidefinite programming, you can achieve an algorithmic efficiency of 0.87.

The Goemans-Williamson technique can be used for any optimization problem where the
variables take on the values of 1 and −1.

0 1

2 3

4

0 10

22 3

1

3

1

4

3

4

As a list of edges the graph is:

edges = [(0, 1), (0, 2), (1, 3), (1, 4), (2, 3), (3, 4)]

The optimization problem can be formulated as:

Max
∑

edges(i,j)

1− xixj

2

for
xi ∈ {−1, 1}

However, instead of allowing xi to be scalar, Goemans-Williamson defines xi as unit vec-
tors.

xi ∈ Rn, xi = 1

and that makes the optimization equation:

Max
∑

edges(i,j)

1− xTi xj

2

It is this ”relaxation” that gets us to a semidefinite matrix, because we can now rewrite
the problem as a positive semidefinite matrix:

X =
[
xTi xj

]
i,j

Python has a module for solving optimization problems. Using this, you will get an

Section 1.6 THE MAX CUT PROBLEM SOLVED IN PYTHON 9

optimum matrix, but to get the unit vectors, you will need to take the square root of the
matrix.

X = [x1...x1n] [x1...x1n]
T

Next we need to go from unit vectors to scalars, using a process called rounding.

xi ∈ Rn → xi ∈ {−1, 1}

Goemans-Williamson leveraged the fact that the end point of a unit vector is on a sphere.
They generated a random plane to bisect the sphere. A vector on one side of the plane is
assigned the value of 1 and a vector on the other side a value of −1.

You can then assign the scalar values to the nodes and make the cut accordingly. This
particular cut will be 5, as shown.

1.6 The Max Cut Problem Solved in Python

MaxCut Problem
import numpy as np
import scipy
from scipy.linalg import sqrtm
cvxpy is a python module for solving optimization problems
import cvxpy as cp

define the edges of the graph
edges = [(0,1),

(0,2),
(1,3),
(1,4),
(2,3),
(3,4)]

Declare the matrix X to be positive semidefinite
X = cp.Variable((5,5),symmetric=True)
constraints = [X >> 0]

10 Chapter 1. TACKLING DIFFICULT PROBLEMS: POSITIVE SEMIDEFINITE MATRICES

Set diagonals to 1 to get unit vectors
constraints += [

X[i,i] == 1 for i in range(5)
]

Set the objective function
objective = sum(05.*(1 - X[i,j]) for (i,j)in edges)

Set up the problem to maximize using the objective function and
keeping within the set constraints
prob = cp.Problem(cp.Maximize(objective), constraints)

Returns a positive semidefinite matrix
print(prob.solve())

To get the vectors, take square root of the matrix
x = sqrtm(X.value)

Generate a random hyperplane
u = np.random.randn(5) # normal to random hyperplane

Pick values according to which side of the hyperplane the vectors are on
x = np.sign(x @ u)

Chapter 2

Data Tables and pandas

Much of the data that you will encounter in your career will come to you as a table. Some
of these tables are spreadsheets, some are in relational databases, and some will come to
you as CSV files.

Typically, each column will represent an attribute (like height or acreage) and each row
will represent an entity (like a person or a farm). You might get a table like this:

property_id bedrooms square_meters estimated_value
7927 3 921.4 $ 294,393
9329 2 829.1 $ 207,420

In most casess, one of the columns is guaranteed to be unique. We call this the primary
key. In this table, property_id is the primary key; every property has one, and no two
properties have the same property_id.

2.1 Data types

Each column in a table has a type, and these usually correspond pretty nicely with types
in Python.

Here are some common datatypes:

Type Python type Example
Integer int 910393
Float float -23.19
String string 'Fred'

Boolean bool False
Date datetime.date 2019-12-04

Timestamps datetime.datetime 2022-06-10T14:05:22Z

Sometimes it is OK to have values missing. For example, if you had a table of data about
employees, maybe one of the columns would be retirement — a date that tells you when
the person retired. People who had not yet retired would have no value in this column.
We would say that they have null for retirement.

Sometimes there are constraints on what values can appear in the column. For example,
if the column were height, it would make no sense to have a negative value.

11

12 Chapter 2. DATA TABLES AND PANDAS

Sometimes a column can only be one of a few values. For example, if you ran a bike rental
shop, each bicycle’s status would be “available”, “rented”, or “broken”. Any other values
in that column would not be allowed. We often call these columns categorical.

2.2 pandas

The Python community works with tables of data very often, so it created the pandas
library for reading, writing, and manipulating tables of data.

When working with tables, you sometimes need to go through them row-by-row. How-
ever, for large datasets, this is very slow. pandas makes it easy (and very fast) to say
things like “Delete every row that doesn’t have a value for height” instead of requiring
you to step through the whole table.

In pandas, there are two datatypes that you use a lot:

• a Series is a single column of data.

• a DataFrame is a table of data: it has a Series for each column.

In the digital resources, you will fined bikes.csv. If you look at it in a text editor, it will
start like this:

bike_id,brand,size,purchase_price,purchase_date,status
5636248,GT,57,277.99,1986-09-07,available
4156134,Giant,56,201.52,2005-01-09,rented
7971254,Cannondale,54,292.25,1978-02-28,available
3600023,Canyon,57,197.62,2007-02-15,broken

The first line is a header; it tells you the name of each column. Next, the values are
separated by commas. (Thus the name: CSV stands for “Comma-Separated Values”.)

2.3 Reading a CSV with pandas

Let’s make a program that reads bikes.csv into a pandas dataframe. Create a file called
report.py in the same folder as bikes.csv.

First, we will read in the csv file. pandas has one series that acts as the primary key; it
calls this one the index. When reading in the file, we will tell it to use the bike_id as the
index series.

If you ask a dataframe for its shape, it returns a tuple containing the number of rows and

Section 2.4 LOOKING AT A SERIES 13

the number of columns. To confirm that we have actually read the data in, let’s print those
numbers. Add these lines to report.py:

import pandas as pd

Read the CSV and create a dataframe
df = pd.read_csv('bikes.csv', index_col="bike_id")

Show the shape of the dataframe
(row_count, col_count) = df.shape
print(f"*** Basics ***")
print(f"Bikes: {row_count:,}")
print(f"Columns: {col_count}")

Build it and run it. You should see something like this:

*** Basics ***
Bikes: 998
Columns: 5

Note that your table actually has six columns. The index series is not included in the
shape.

2.4 Looking at a Series

Let’s get the lowest, the highest, and the mean purchase price of the bikes. The purchase
price is a series, and you can ask the dataframe for it. Add these lines to the end of your
program:

Purchase price stats
print("\n*** Purchase Price ***")
series = df["purchase_price"]
print(f"Lowest:{series.min()}")
print(f"Highest:{series.max()}")
print(f"Mean:{series.mean():.2f}")

Now when you run it, you will see a few additional lines:

*** Purchase Price ***
Lowest:107.37
Highest:377.7
Mean:249.01

14 Chapter 2. DATA TABLES AND PANDAS

What are all the brands of the bikes? Add a few more lines to your program that shows
how many of each brand:

Brand stats
print("\n*** Brands ***")
series = df["brand"]
series_counts = series.value_counts()
print(f"{series_counts}")

Now when you run it, your report will include the number of bikes for each brand from
most to least common:

*** Brands ***
Canyon 192
BMC 173
Cannondale 170
Trek 166
GT 150
Giant 147
Name: brand, dtype: int64

value_counts returns a Series. To format this better, we need to learn about accessing
individual rows in a series.

2.5 Rows and the index

In an array, you ask for data using an the location (as an int) of the item you want. You
can do this in pandas using iloc. Add this to the end of your program:

First bike
print("\n*** First Bike ***")
row = df.iloc[0]
print(f"{row}")

When you run it, you will see the attributes of the first row of data:

*** First Bike ***
brand GT
size 57
purchase_price 277.99
purchase_date 1986-09-07

Section 2.6 CHANGING DATA 15

status available
Name: 5636248, dtype: object

Notice that the data coming back is actually another series.

The last line says that the name (the value for the index column) for this row is 5636248.
In pandas, we usually use this to locate particular rows. For example, there is a row with
bike_id equal to 2969341. Let’s ask for one entry from the

print("\n*** Some Bike ***")
brand = df.loc[2969341]['brand']
print(f"brand = {brand}")

Now, you will see the information about that bike:

*** Some Bike ***
brand = Cannondale

pandas has a few different ways of getting to that value. All of these get you the same
thing:

brand = df.loc[2969341]['brand'] # Get row, then get value
brand = df['brand'][2969341] # Get column, then get value
brand = df.loc[2969341, 'brand'] # One call with both row and value

2.6 Changing data

One of your attributes needs cleaning up. Every bike should have a status, and it should
be one of the following strings:”available”, “rented”, or “broken”. Get counts for each
unique value in status:

print("\n*** Status ***")
series = df["status"]
missing = series.isnull()
print(f"{missing.sum()} bikes have no status.")
series_counts = series.value_counts()
for value in series_counts.index:

print(f"{series_counts.loc[value]} bikes are \"{value}\"")

This will show you:

16 Chapter 2. DATA TABLES AND PANDAS

*** Status ***
7 bikes have no status.
389 bikes are "rented"
304 bikes are "broken"
296 bikes are "available"
1 bikes are "Flat tire"
1 bikes are "Available"

Right away, we can see two easily fixable problems: Someone typed “Available” instead
of “available”. Right after you read the CSV in, fix this in the data frame:

mask = df['status'] == 'Available'
print(f"{mask}")
df.loc[mask, 'status'] = 'available'

When you run this, you will see that the mask is a series with bike_id as the index
and False or True as the value, depending on whether the row’s status was equal to
“Available”.

When you use loc with this sort of mask, you are saying “Give me all the rows for which
the mask is True.” So, the assignment only happens in the one problematic row.

Let’s get rid of the mask variable and do the same for turning Flat tire into Broken:

df.loc[df['status'] == 'Available', 'status'] = 'available'
df.loc[df['status'] == 'Flat tire', 'status'] = 'broken'

Now those problems are gone:

7 bikes have no status.
389 bikes are "rented"
305 bikes are "broken"
297 bikes are "available"

What about the rows with no values for status? If we were pretty certain that the bikes
were available, we could just set them to ’available’:

missing_mask = df['status'].isnull()
df.loc[missing_mask, 'status'] = 'available'

Or maybe we would print out the IDs of the bikes so that we could go look for them:

Section 2.7 DERIVED COLUMNS 17

missing_mask = df['status'].isnull()
missing_ids = list(df[missing_mask].index)
print(f"These bikes have no status:{missing_ids}")

However, let’s just keep the rows where the status is not null:

missing_mask = df['status'].isnull()
df = df[~missing_mask]

At the end of your program, write out the improved CSV:

df.to_csv('bikes2.csv')

Run the program and open bikes2.csv in a text editor.

2.7 Derived columns

Let’s say that you want to add a column with age of the bicycle in days:

bike_id,brand,size,purchase_price,purchase_date,status,age_in_days
5636248,GT,57,277.99,1986-09-07,available,13061
4156134,Giant,56,201.52,2005-01-09,rented,6362
7971254,Cannondale,54,292.25,1978-02-28,available,16174

Your first problem is that the purchase_date column looks like a date, but really it is a
string. So, you need to convert it to a date. You can do this by applying a function to
every item in the series:

df['purchase_date'] = df['purchase_date'].apply(lambda s: datetime.date.fromisoformat(s))

(With pandas, there is often more than one way to do things. pandas has a to_datetime
function that converts every entry in a sequence to a datetime object. Here is another
way to convert the string column in to a date column:

df['purchase_date'] = pd.to_datetime(df['purchase_date']).dt.date

You can look up dt and date if you are curious.)

Now, we can use the same trick to create a new column with the age in days:

today = datetime.date.today()

18 Chapter 2. DATA TABLES AND PANDAS

df['age_in_days'] = df['purchase_date'].apply(lambda d: (today - d).days)

When you run this, the new bikes.csv will have an age_by_date column.

Chapter 3

Data tables in SQL

Most organizations keep their data as tables inside a relational database management
system. Developers talk to those systems using a language called SQL (“Structured Query
Language”).

Some relational database managers are pricey products you may have heard of before,
such as Oracle or Microsoft SQL Server. Some are free, such as PostgreSQL or MySQL.
These are server software that client programs talk to over the companies network.

There is a library, called sqlite, that lets us create files that hold tables. We can use SQL
to create, edit, and browse those tables. sqlite is free, fast, and very easy to install. We
will use sqlite instead of a networked database management system.

If you look in your digital resources, you will find a file called bikes.db. We created this
file using sqlite, and now you will use sqlite to access it.

In the terminal, get to the directory where bikes.db lives. To open the sqlite tool on that
file:

> textbfsqlite3 bikes.db

(If your system complains that there is no sqlite3 tool, you need to install sqlite. See this
website: https://sqlite.org/)

Please follow along: type each command shown here into the terminal and see what
happens.

We mostly run SQL commands in this tool, but there are a few non-SQL commands that
all start with a period. To see the tables and their columns, you can run .schema:

sqlite> .schema
CREATE TABLE bike (bike_id int PRIMARY KEY, brand text, size int,

purchase_price real, purchase_date date, status text);

That is the SQL command that we used to create the bike table. You can see all the
columns and their types.

You want to see all the rows of data in that table?

19

https://sqlite.org/

20 Chapter 3. DATA TABLES IN SQL

sqlite> select * from bike;
4997391|GT|57|269.61|2009-05-03|rented
5429447|Cannondale|50|215.91|2002-02-17|broken
5019171|Trek|58|251.17|1985-07-11|rented
3000288|Cannondale|57|211.08|1993-01-05|broken
880965|GT|52|281.75|1995-08-02|available
...

You will see 1000 rows of data!

The SQL language is not case-sensitive, so you can also write it like this:

sqlite> SELECT * FROM BIKE;

Often, you will see SQL with just the SQL keywords in all caps:

sqlite> SELECT * FROM bike;

The semicolon is not part of SQL, but it tells sqlite that you are done writing a command
and that it should be executed.

SQL lets you choose which columns you would like to see:

sqlite> SELECT bike_id, brand FROM bike;
4997391|GT
5429447|Cannondale
5019171|Trek
3000288|Cannondale
...

Using WHERE, SQL lets you choose which rows you would like to see:

sqlite> SELECT * FROM bike WHERE purchase_date > '2009-01-01' AND brand = 'GT';
4997391|GT|57|269.61|2009-05-03|rented
326774|GT|56|165.0|2009-06-27|available
264933|GT|52|302.43|2009-07-09|available
5931243|GT|55|173.56|2009-11-26|rented
4819848|GT|51|221.71|2009-12-11|rented
9347713|GT|52|232.32|2009-06-13|available
3019205|GT|58|262.94|2009-08-22|available

Using DISTINCT, SQL lets you get just one copy of each value:

21

sqlite> SELECT DISTINCT status FROM bike;
rented
broken
available

Busted
Flat tire
good
out
Rented

You can also edit these rows. For example, if you wanted every status that is Busted to
be changed to broken, you can use an UPDATE statement:

sqlite> UPDATE bike SET status='broken' WHERE status='Busted';
sqlite> SELECT DISTINCT status FROM bike;
rented
broken
available

Flat tire
good
out
Rented

You can insert new rows:

sqlite> INSERT INTO bike (bike_id, brand, size, purchase_price, purchase_date, status)
...> VALUES (1, 'GT', 53, 123.45, '2020-11-13', 'available');

sqlite> SELECT * FROM bike WHERE bike_id = 1;
1|GT|53|123.45|2020-11-13|available

You can delete rows:

sqlite> DELETE FROM bike WHERE bike_id = 1;
sqlite> SELECT * FROM bike WHERE bike_id = 1;

To get out of sqlite, type .exit.

22 Chapter 3. DATA TABLES IN SQL

Exercise 3 SQL Query

.Execute an SQL query that returns the
bike_id (no other columns) of every Trek
bike that cost more than $300.

Answer on Page 27

Working Space

3.1 Using SQL from Python

The people behind sqlite created a library for Python that lets you execute SQL and fetch
the results from inside a python program.

Let’s create a simple program that fetches and displays the bike ID and purchase date of
every Trek bike that cost more than $300.

Create a file called report.py:

import sqlite3 as db

con = db.connect('bikes.db')
cur = con.cursor()

cur.execute("SELECT bike_id, purchase_date FROM bike WHERE purchase_price > 330 AND brand='Trek'")
rows = cur.fetchall()

today = datetime.date.today()
for row in rows:

print(f"Bike {row[0]}, purchased {row[1]}")

con.close()

When you execute it, you should see:

> python3 report.py
Bike 4128046, purchased 2007-08-06
Bike 7117808, purchased 1995-03-12
Bike 7176903, purchased 1986-07-03
Bike 827899, purchased 2009-03-14

Section 3.1 USING SQL FROM PYTHON 23

Bike 363983, purchased 1970-08-16

Chapter 4

Representing Natural Numbers

Natural numbers are positive whole numbers, such as 1, 2, 3, and so on. -5 is not a natural
number. π is not a natural number. 1

2 is not a natural number.

You are used to seeing the natural numbers represented in a base-10Hindu-Arabic numeral
system. That is, when you see 2531 you think “2 thousands, 5 hundreds, 3 tens, and 1
one.” Rewritten, this is:

2× 103 + 5× 102 + 3× 101 + 1× 100

In any Hindu-Arabic system, the location of the digits is meaningful: 101 is different from
110. Here are those numbers in Roman numerals: CI and CX. Roman numerals didn’t
have a symbol for zero at all.

The Hindu-Arabic system gave us really straightforward algorithms for addition and mul-
tiplication. For addition, you memorized the following table:

0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

When you multiplied two number together, you simply multiplied each pair of digits.
254× 26 might look like this:

25

26 Chapter 4. REPRESENTING NATURAL NUMBERS

2 5 4
× 2 6

2 4 6× 4

3 0 6× 5

1 2 6× 2

8 2× 4

1 0 2× 5

+ 4 2× 2

6 6 0 4

For multiplication, you memorized this table:

0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 10 12 14 16 18
3 0 3 6 9 12 15 18 21 24 27
4 0 4 8 12 16 20 24 28 32 36
5 0 5 10 15 20 25 30 35 40 45
6 0 6 12 18 24 30 36 42 48 54
7 0 7 14 21 28 35 42 49 56 63
9 0 9 18 27 36 45 54 63 72 81

Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 7)

Yes. Its eigenvalues are
2, 2

Answer to Exercise 2 (on page 7)

The answer depends on the 3 by 3 matrix you chose.

Answer to Exercise 3 (on page 22)

SELECT bike_id FROM bike WHERE purchase_price > 330 AND brand='Trek'

27

28 Chapter A. ANSWERS TO EXERCISES

Index

null, 11

29

	Tackling Difficult Problems: Positive Semidefinite Matrices
	NP Problems
	A Past Approach: Minimizing Errors in Neural Networks
	Positive Definite and Semidefinite Matrices
	Identifying and Constructing a Positive Semidefinite Matrix
	The Max Cut Problem
	The Max Cut Problem Solved in Python

	Data Tables and pandas
	Data types
	pandas
	Reading a CSV with pandas
	Looking at a Series
	Rows and the index
	Changing data
	Derived columns

	Data tables in SQL
	Using SQL from Python

	Representing Natural Numbers
	Answers to Exercises
	Index

