
Contents

1 Projections 3
1.1 Projections in Python 6
1.2 Where to Learn More 6

2 The Gram-Schmidt Process 7
2.1 The Process 7
2.2 Example Calculation 8
2.3 The Gram-Schmidt Process in Python 10
2.4 Where to Learn More 11

3 Eigenvectors and Eigenvalues 13
3.1 Definition 14
3.2 Finding Eigenvalues and Eigenvectors 14
3.3 Example 14
3.4 Eigenvalues and Eigenvectors in Python 17
3.5 Summary 17
3.6 Where to Learn More 18

4 Singular Value Decomposition 19
4.1 Definition 19
4.2 Applications of SVD 19
4.3 Calculating SVD Manually 20
4.4 Singular Value Decomposition with Python 23
4.5 Sign Ambiguity 24

1

2

4.6 SVD Applied to Image Compression 24
4.7 Where to Learn More 25

5 Tackling Difficult Problems: Positive Semidefinite Matrices 27
5.1 NP Problems 27
5.2 A Past Approach: Minimizing Errors in Neural Networks 28
5.3 Positive Definite and Semidefinite Matrices 29
5.4 Identifying and Constructing a Positive Semidefinite Matrix 30
5.5 The Max Cut Problem 31
5.6 The Max Cut Problem Solved in Python 33

A Answers to Exercises 35

Index 37

Chapter 1

Projections

The word ”projection” has two main meanings in everyday life. One is a projection as
a forecast or estimate of something in the future based on the current situation; another
is the result of shining a light to cast a shadow or show a movie. Both these definitions
apply to mathematical projection.

Projections are used in many fields, such as science, math, engineering, and finance. Here
are a few examples:

• Investors evaluate risk and return of a portfolio by projecting an asset’s return onto
a reference portfolio.

• Astronomers analyze the motion of stellar objects by projecting the object’s true
motion onto the plane of the sky.

• Robotics engineers use projections to prevent robots from running into obstacles by
projecting the robot’s position onto the optimal path.

Mathematically, a projection describes the relationship of one vector to another in terms
of direction and orthogonality. Given two vectors, u and v, the projection of u onto v
separates u into two components. The first component signifies how much u lies in the
direction of v. The second signifies the component of u that is orthogonal (perpendicular)
to v.

The figure 1.1 depicts a projection. The perpendicular line dropped from the end of u
is the orthogonal component. The portion of u that lies in the direction of v is the blue
segment.

You can also think of a projection as the shadow cast by one vector onto the other by an
overhead light. See Figure 1.2

The projected vector can be in any direction and its length can extend beyond the vector
onto which it is projecting. See Figure 1.3.

To calculate the projection of v onto u, use this formula:

Projection of u onto v : projv(u) =
u · v
‖v‖2

v =
u · v
v · v

v

where u ·v is the dot product of ~u and ~v. Note that either form of the equation works,

3

4 Chapter 1. PROJECTIONS

u

v

orthogonal component

u in v component

Figure 1.1: The projection of u onto v

Light

u

v

orthogonal component

u in v component

Figure 1.2: Projection of u onto v with a light included to simulate a shadow.

5

u

v

Figure 1.3: Projection vector extended beyond v.

and the v being multiplied by the dot product quotient cannot be cancelled because
it is a vector, not a scalar.

Note that the denominator is the magnitude squared of vector v.(√
a2
1 + a2

2 + ...+ a2
n

)2

You learned previously that this is the same as the dot product of a vector with itself.

v · v

In the examples that follow, we will simplify to the dot product notation.

Let’s look at a specific example:
u = (1, 4, 6)

v = (−2, 6, 2)

projv(u) =
u · v
‖ v ‖2

v

projv(u) =
(1, 4, 6) · (−2, 6, 2)

(−2, 6, 2) · (−2, 6, 2)
(−2, 6, 2)

6 Chapter 1. PROJECTIONS

projv(u) = (
34

44
(−2, 6, 2)

projv(u) = (−1.545, 4.64, 1.545)

As youwork your way through this course, youwill have a chance to apply the calculations
you learn in this chapter to a variety of problems. Specifically, the next chapter shows how
to transform a set of linearly independent vectors into a set of orthogonal ones. Projections
are essential to that transformation.

Exercise 1 Projections

.Find the projection of a on b where:

a = (1, 3)

b = (−4, 6)

Answer on Page 35

Working Space

1.1 Projections in Python

Create a file called projections.py and enter this code:

import numpy as np

define two vectors
a = np.array([1, 4, 6])
b = np.array([-2, 6, 2])

use np.dot() to calculate the dot product
projection_a_on_b = (np.dot(a, b)/np.dot(b, b))*b

print("The projection of vector a on vector b is:", projection_a_on_b)

1.2 Where to Learn More

Watch this Introduction to Projections from Khan Academy from your digital resources:
https://rb.gy/yf0i3

https://rb.gy/yf0i3

Chapter 2

The Gram-Schmidt Process

The Gram-Schmidt process is a method use to transform a set of linearly independent
vectors to a set of orthogonal (perpendicular) vectors. The original vectors and the trans-
formed vectors span the same subspace.

The process was named after two mathematicians: Jørgen Pedersen Gram, a Danish ac-
tuary mathematician, and Erhard Schmidt, a German mathematician. The men devel-
oped the orthogonalization process independently. Gram introduced the process in 1883,
whereas Schmidt did his work in 1907. It was not named the Gram-Schmidt process un-
til sometime later, after both mathematicians became well known in the mathematical
community.

In the last chapter, you learned how to calculate a projection of one vector on another.
Given two vectors, u and v, the projection separates u into the part that is orthogonal to v

and the part that has a dependency with v. The Gram-Schmidt process builds on the no-
tion of projections to iteritively strip away dependencies between vectors until the vectors
that remain are orthogonal. If there happens to be a vector that is a linear combination of
the others, that vector will be reduced to the zero vector. The vectors that remain define
a new basis for space spanned by the original set of vectors.

Gram-Schmidt has many practical applications in science and engineering, such as:

1. In signal processing, it can represent an audio signal with fewer components making
it easier to isolate and remove noise.

2. In statistics and data analysis, it can reduce the complexity of a dataset so that it is
easier to see which aspects or features contribute to the analysis.

2.1 The Process

The Gram-Schmidt process orthonormalizes a set of vectors in an inner product space,
most commonly the Euclidean space Rn. The process takes a finite, linearly independent
set S = {v1, v2, . . . , vk} for k ≤ n, and generates an orthogonal set S ′ = {u1, u2, . . . , uk} that
spans the same k-dimensional subspace of Rn as S.

Let’s look at how the process works. Given a set of vectors S = {v1, v2, . . . , vk}, the Gram-
Schmidt process is as follows:

7

8 Chapter 2. THE GRAM-SCHMIDT PROCESS

1. Let u1 = v1.

2. For j = 2, 3, . . . , k:

(a) Let wj = vj −
∑j−1

i=1
〈vj,ui〉
〈ui,ui〉ui

(b) Let uj = wj

Here, 〈., .〉 denotes the inner product.

The set of vectors S ′ = {u1, u2, . . . , uk} obtained from this process is orthogonal, but not
necessarily orthonormal. To create an orthonormal set, you simply need to normalize each
vector ui to unit length. That is, u ′

i =
ui

‖ui‖ , where ‖.‖ denotes the norm (or length) of a
vector.

Among other things, making vectors orthonormal simplifies calculations makes it easier to
define rotations and transformations, and provides a framework for calculations in fields
such as quantum mechanics.

2.2 Example Calculation

Given a set of linearly independent vectors, we will use the Gram-Schmidt process to find
an orthogonal basis.

Let
W = Span(x1, x2, x3)

where
x1 = (1, 2,−2)

x2 = (1, 0,−4)

x3 = (5, 2, 0)

The three orthogonal vectors will define the same subspace as the original vectors.

The first vector of the orthogonal subspace is easy to define. We set it to be the same as
x1.

v1 = x1 = (1, 2,−2)

The second orthogonal vector is a projection of x2 onto v1. You learned projections in the
last chapter, so this should be fairly straightforward.

Section 2.2 EXAMPLE CALCULATION 9

v2 = x2 −
x2v1
v1v1

v1

Substitute the values:

v2 = (1, 0,−4) −
(1, 0,−4)(1, 2,−2)

(1, 2,−2)(1, 2,−2)
(1, 2,−2)

Calculate the coefficient for v1:

v2 = (1, 0,−4) −
9

9
(1, 2,−2)

Perform the subtraction:
v2 = (0,−2,−2)

The third vector for the orthogonal subspace is a projection onto v1 and v2.

v3 = x3 −
x3v1
v1v1

v1 −
x3v2
v2v2

v2

Substitute the values:

v3 = (5, 2, 0) −
(5, 2, 0)(1, 2,−2)

(1, 2,−2)(1, 2,−2)
(1, 2,−2) −

(5, 2, 0)(1, 0,−4)

(1, 0,−4)(1, 0,−4)
(1, 0,−4)

v3 = (5, 2, 0) − (9/9)(1, 2,−2) − (−4/8)(1, 0,−4)

v3 = (5, 2, 0) − (1, 2,−2) + (1/2)(1, 0,−4)

v3 = (5, 2, 0) − (1, 2,−2) + (0,−1,−1)

v3 = (4,−1, 1)

This set of vectors is orthogonal, so we need to normalize them so that the vectors are
orthonormal. Recall that an orthonormal vector has a length of 1 and is computed using
this formula:

normalizedVector = vector/np.sqrt(np.sum(vector ∗ ∗2))

Thus the normalized set of vectors is:

v1 = (0.33, 0.67,−0.67)

v2 = (0.0,−0.71,−0.71)

v3 = (0.94,−0.24, 0.24)

10 Chapter 2. THE GRAM-SCHMIDT PROCESS

Exercise 2 Gram-Schmidt Process

.Use the Gram-Schmidt process to to find
an orthogonal basis for the span defined
by x1, x2 where:

x1 = (1, 1, 1)

x2 = (0, 1, 1)

Answer on Page 35

Working Space

2.3 The Gram-Schmidt Process in Python

Create a file called vectors_gram-schmidt.py and enter this code:

import numpy to perform operations on vector
import numpy as np

Find an orthogonal basis for the span of these three vectors
x1 = np.array([1, 2, -2])
x2 = np.array([1, 0, -4])
x3 = np.array([5, 2, 0])

v1 = x1
v1 = x1
print("v1 = ",v1)

v2 = x2 - (the projection of x2 on v1)
v2 = x2 - (np.dot(x2,v1)/np.dot(v1,v1))*v1
print("v2 = ", v2)

v3 = x3 - (the projection of x3 on v1) - (the projection of x3 on v3)
v3 = x3 - (np.dot(x3,v1)/np.dot(v1,v1))*v1 - (np.dot(x3,v2)/np.dot(v2,v2))*v2
print("v3 =", v3)

Next, normalize each vector to get a set of vectors that is both orthogonal and orthonormal:
v1_norm = v1 / np.sqrt(np.sum(v1**2))
v2_norm = v2 / np.sqrt(np.sum(v2**2))
v3_norm = v3 / np.sqrt(np.sum(v3**2))

Section 2.4 WHERE TO LEARN MORE 11

print("v1_norm = ", v1_norm)
print("v2_norm = ", v2_norm)
print("v3_norm = ", v3_norm)

2.4 Where to Learn More

Watch this video from Khan Academy about the Gram-Schmidt process: https://www.
youtube.com/watch?v=rHonltF77zI

https://www.youtube.com/watch?v=rHonltF77zI
https://www.youtube.com/watch?v=rHonltF77zI

Chapter 3

Eigenvectors and Eigenvalues

Like many specialized disciplines, Linear Algebra uses many unfamiliar terms whose ori-
gins you might wonder about. Eigenvectors and eigenvalues are two of them. If you know
German, you will recognize that eigen means inherent or a characteristic attribute. Named
by the German mathematician David Hilbert, an eigenvector mathematically describes a
characteristic feature of an object that remains unchanged after transformation. You can
think of an eigenvector as the direction that doesn not change direction. An eigenvector
characterizes a linear transformation, whereas its eigenvalue tells how much the vector is
scaled. Eigenvalues can be negative or positive. A negative value indicates the direction
of the eigenvector is reversed.

Eigenvalues and eigenvectors are a way to break down matrices, which can simplify many
calculations and enable us to understand various properties of the matrix. They are widely
used in physics and engineering for stability analysis, vibration analysis, and many other
applications.

Let’s look at a visual example.

Figure 3.1: Standardized and skewed squirrel image.

You can see that the image on the right is a skewed version of the image on the left. Look
closely at the vectors and you will notice that one of the vectors is pointing in the same
direction in both images, while the direction of the other two vectors has changed. The
eigenvector is the one at the bottom that points to 0 degrees (which you can think of due
east) in both images. So, the characteristic attribute of both images is their horizontal
direction.

When you overlay the vectors from one image over the other, you will notice that the
horizontal vector, while the same direction in both images, is a bit longer in the skewed
version. The scale of the stretch is described by an eigenvalue.

13

14 Chapter 3. EIGENVECTORS AND EIGENVALUES

Figure 3.2: Standardized and skewed squirrel image overlayed on eachother.

3.1 Definition

Given a square matrix A, a non-zero vector v is an eigenvector of A if multiplying A by v

results in a scalar multiple of v. In other words, the eigenequation is:

Av = λv (3.1)

where λ is a scalar known as the eigenvalue corresponding to the eigenvector v.

3.2 Finding Eigenvalues and Eigenvectors

You find the eigenvalues of a matrix A by solving the characteristic equation:

det(A− λI) = 0 (3.2)

where det(.) denotes the determinant, I is the identity matrix of the same size as A, and λ

is a scalar.

Once your find the eigenvalues, you can find the corresponding eigenvectors by sub-
stituting each eigenvalue into the equation Av = λv, and solving for v. FIXME visual
representation graphically?

3.3 Example

For a 2× 2 matrix A =

(
a b

c d

)
, the characteristic equation is:

Section 3.3 EXAMPLE 15

(a− λ)(d− λ) − bc = 0 (3.3)

Solving this equation gives the eigenvalues. Substituting each eigenvalue back into the
equation Av = λv gives the corresponding eigenvectors.

Let matrix A = [
5 4

1 2

]

The characteristic equation is:
|A− λI| = 0[

5− λ 4

1 2− λ

]
= 0

(5− λ)(2− λ) − (4)(1) = 0

10− 5λ− 2λ+ λ2− 4 = 0

λ2− 7λ+ 6 = 0

(λ− 6)(λ− 1) = 0

λ = 6, λ = 1

Now that you have the eigen values you can substitue these values into the equation:

|A− λI| = 0

For = 1:
(A− λI)v = O[

5− 1 4

1 2− 1

] [
x

y

]
=

[
0

0

]
[
4 4

1 1

] [
x

y

]
=

[
0

0

]
Next, use elementary row transformation by multiplying row 2 by 4, then subtracting row
1. [

4 4

0 0

] [
x

y

]
=

[
0

0

]

Now you can expand as an equation:

4x+ 4y = 0

16 Chapter 3. EIGENVECTORS AND EIGENVALUES

Assume y = w

4x = −4w

x = −w

The solution is:

[
x

y

]
=

[
−w

w

]
= w

[
−1

1

]

So the eigenvector is:

[
−1

1

]

Now we need to substitute the other eigenvalue, 6, into the equation and follow the same
procedure for finding the eigenvector.

[
5− 6 4

1 2− 6

] [
x

y

]
=

[
0

0

]
[
−1 4

1 −4

] [
x

y

]
=

[
0

0

]

Next, use elementary row transformation by adding row 1 to row 2.

[
−1 4

0 0

] [
x

y

]
=

[
0

0

]

Expand as an equation:

−x+ 4y = 0

Assumey = w

−x+ 4w = 0

Section 3.4 EIGENVALUES AND EIGENVECTORS IN PYTHON 17

x = 4w

The solution is: [
x

y

]
=

[
4w

w

]
= w

[
4

1

]
So the eigenvector is: [

4

1

]
In conclusion, the eigenvectors of the given 2 x 2 matrix are:[

−1

1

]
and

[
4

1

]

3.4 Eigenvalues and Eigenvectors in Python

Create a file called vectors_eigen.py and enter this code:

import numpy to perform operations on vector
import numpy as np
from numpy.linalg import eig

a = np.array([[2, 2, 4],
[1, 3, 5],
[2, 3, 4]])

eigenvalue,eigenvector = eig(a)

The values are not in any particular order
print('Eigenvalues:', eigenvalue)

The eig function returns the normalize vectors
print('Eigenvectors:', eigenvector)

3.5 Summary

Lets sum this up in a short way:

You have a transformation — something that stretches, squishes, flips, or rotates space.
This transformation could be represented by a matrix.

Most vectors in space will get changed in both direction and length when you apply the
transformation.

18 Chapter 3. EIGENVECTORS AND EIGENVALUES

But some special vectors don’t change direction at all — they only get stretched or shrunk
(and maybe flipped).

These special “unchanging-direction” vectors are called eigenvectors. The amount they
get stretched (or shrunk) is their eigenvalue.

3.6 Where to Learn More

Watch this video from Khan Academy, Introduction to Eigenvectors: https://rb.gy/mse7i

https://rb.gy/mse7i

Chapter 4

Singular Value Decomposition

In the previous chapter, you learned how to calculate eigenvalues and eigenvectors. How-
ever, not every matrix has them. For those matrices, singular values and singular vectors
are analogous features.

Singular Value Decomposition (SVD) is a matrix factorization technique that breaks down
a matrix into three matrices that represent the structure and properties of the original
matrix. The decomposed matrices make calculations easier and provide insight into the
original matrix. Essentially, SVD can transform a high dimension, highly variable set of
data into a set of uncorrelated data points that reveal subgroupings that you might not
have noticed in the original data. SVD tells us that a linear transformation can be thought
of as a rotation, scaling, and another rotation.

4.1 Definition

For any m× n matrix A, SVD decomposes the matrix into three matrices.

A = UΣVT (4.1)

• U is an orthogonal matrix whose size is m×m. Its columns are the eigenvectors of
AAT . These are the left singular vectors of A. Because U is orthogonal, UTU = I.

• V is an orthogonal matrix whose size is n×nmatrix. Its columns are the eigenvectors
of ATA. These are the right singular vectors of A. Because V is orthogonal, VTV = I.

• Σ is a diagonal matrix that is the same size as A. Its diagonal contains the singular
values of A, arranged in descending order. These values are the square roots of the
eigenvalues of both ATA and AAT .

4.2 Applications of SVD

SVD has numerous applications:

• It is used in machine learning and data science to perform dimensionality reduction,
particularly through a technique known as Principal Component Analysis (PCA).

19

20 Chapter 4. SINGULAR VALUE DECOMPOSITION

• In numerical linear algebra, SVD is used to solve linear equations and compute
matrix inverses in a more numerically stable way.

• It is used in image compression, where low-rank approximations of an image matrix
provide a compressed version of the original image.

4.3 Calculating SVD Manually

You might be inclined to skip this example because the computations are lengthy. Why
would anyone do this when they can use a computing language, like Python, to calculate
the SVD with essentially one command? We show this so you can understand what goes
on ”under the hood” when you compute SVD programmatically.

After you read through this example, you will see how to use Python to compute SVD.
Next, you will see an example of using SVD for image compression. Finally, you will be
given an exercise to compute the SVD. For this, you will need to write your own Python
script.

Let’s find the SVD for matrix A. Recall that we want to find U. Σ, and VT such that:

A = UΣVT (4.2)

A =

[
3 1 1

−1 3 1

]

U = AAT

Calculating
AAT

will give us a square matrix:

AT =

3 −1

1 3

1 1


AAT =

[
3 1 1

−1 3 1

]3 −1

1 3

1 1

 =

[
11 1

1 11

]
Next, we will find the eigenvalues and eigenvectors of AT . This is a chance to apply what
you learned in the previous chapter. We know that:

Av = λv (4.3)

Section 4.3 CALCULATING SVD MANUALLY 21

So: [
11 1

1 11

] [
x1
x2

]
= λ

[
x1
x2

]
Rewrite as a set of equations:

11x1 + x2 = λx1

x1 + 11x2 = λx2

Then rearrange:
(11−λ)x1 + x2 = 0

x1 + (11−λ)x2 = 0

Solve for λ: [
(11− λ), 1
1, (11− λ)

]
= 0

And as equations:
(11−λ)(11−λ)−1·1 = 0

(λ−10)(λ−12) = 0

These are the eigenvalues.
λ = 10

λ = 12

When substituted into the original equations, you get the eigenvectors. For

λ = 10

:
(11−10)x1 + x2 = 0

x1 = −x2

We will set
x1

to 1 and get this eigenvector:
[1,−1]

For
λ = 10

:
(11−12)x1 + x2 = 0

x1 = x2

We will set
x1

to 1 and get this eigenvector:
[1, 1]

22 Chapter 4. SINGULAR VALUE DECOMPOSITION

The matrix is: [
1 1

1 −1

]
Next, you need to apply the Gram-Schmidt process to the column vectors. After that, you
will have U, the m×m matrix whose columns are eigenvectors of AAT . These are the left
singular vectors of A. After you apply Gram-Schmidt, you should end up with:

U =

[
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

]
The process for calculating V is the same as the calculation for U, except:

V = ATA

ATA =

3 −1

1 3

1 1

[
3 1 1

−1 3 1

]
=

10 0 2

0 10 4

2 4 2


After applying the process we applied to solve for U, you get:

V =

1/
√
6 2/

√
5 1/

√
30

2/
√
6 −1/

√
5 2/

√
30

1/
√
6 0 −5/

√
30


However, you want VT :

VT =

 1/
√
6 2/

√
6 1/

√
6

2/
√
5 −1/

√
5 0

1/
√
30 2/

√
30 −5/

√
30


You have only to calculate Σ, a diagonal matrix that is the same size as A. The diagonal
contains the singular values of A, arranged in descending order. These are the square
roots of the eigenvalues of both ATA and AAT .

Because the non-zero eigenvalues of U are the same as V, let’s use the eigenvalues we
calculate for U, 10 and 12. Note that Σ will not be of the correct dimension to reconstruct
the orignal matrix unless we add a column. By adding a zero column you’ll be able to
multiply between U and V :

Σ =

[√
12 0 0

0
√
12 0

]
You can check your work by multiplying the decomposed matrices. This should return
the orginal matrix.

A = UΣVT

= U =

[
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

] [√
12 0 0

0
√
12 0

] 1/
√
6 2/

√
6 1/

√
6

2/
√
5 −1/

√
5 0

1/
√
30 2/

√
30 −5/

√
30



Section 4.4 SINGULAR VALUE DECOMPOSITION WITH PYTHON 23

=

[√
12/

√
2

√
10/

√
2 0√

12/
√
2 −

√
10/

√
2 0

] 1/
√
6 2/

√
6 1/

√
6

2/
√
5 −1/

√
5 0

1/
√
30 2/

√
30 −5/

√
30


=

[
3 1 1

−1 3 1

]

4.4 Singular Value Decomposition with Python

Create a file called vectors_decomposition.py and enter this code:

Singular-value decomposition
import numpy as np
from numpy import array
from scipy.linalg import svd
from numpy import diag
from numpy import dot
from numpy import zeros

Define a matrix
A = array([[1, 2], [3, 4], [5, 6]])

print("Matrix (3x2) to be decomposed: ")
print(A)

CalculateSVD
U, S, VT = svd(A)
print("Matrix (3x3) that represents the left singular values of A:")
print(U)
print("Singular values:")
print(S)
print("Matrix (2x2) that represents the right singular values of A:")
print(VT)

Check if the decomposition by rebuilding the original matrix
The singular values must be in an m x n matrix
Create a zero matrix with the same dimension as A
Sigma = zeros((A.shape[0], A.shape[1]))
Populate Sigma with n x n diagonal matrix
Sigma[:A.shape[1], :A.shape[1]] = diag(S)
Reconstruct the original matrix
A_Rebuilt = U.dot(Sigma.dot(VT))
print("Original matrix:")
print(A_Rebuilt)

24 Chapter 4. SINGULAR VALUE DECOMPOSITION

4.5 Sign Ambiguity

You might notice that at times, the absolute values in the U and VT matrices are correct,
but that the signs vary from what you see as the answer. For example, when you compare
a manually calculated SVD with one done in Python the signs might not agree. Both
decompositions of A are valid. Both decompositions will satisfy:

A = UΣVT

Note that the S diagonal values will always be positive.

The sign ambiguity has implications. For example, when using SVD to compress data, if
some of the signs are flipped, the data can have artifacts. At this point in your education,
you don’t need to concern yourself with it, except when you are comparing SVD results
for the same matrix.

Exercise 3 Single Value Decomposition

.Modify your Python code to calculate
SVD for the matrix in the worked out
example. Did you arrive at the same an-
swer? Keep in mind that Python will
compute square roots and present frac-
tions as decimal. Take a look at the signs
for the values in the U and VT matrices.
Are they the same, or is this an example
of sign ambiguity?

Answer on Page 36

Working Space

4.6 SVD Applied to Image Compression

This image consists of a grid of 20 by 10 pixels, each of which is either black or white.

Section 4.7 WHERE TO LEARN MORE 25

It is a simple image that has only two types of columns–ideal for data compression. A
row is either the first pattern or the second.

We can represent the data as a 20 by 10 matrix whose 200 entries are either 0 for black or
1 for white. 

00001000100000001010

00001111111111111010

00001000100000001010

00001000100000001010

00001000100000001010

00001000100000001010

00001000100000001010

00001111111111111010

00001000100000001010

00001000100000001010


When you perform an SVD on this matrix, there are only two non-zero singular values,
6.79 and 3.72. (You are welcome perform the calculation in Python.) Thus, you can
represent the matrix as:

A = U1S1V1 +U2S2V2

This means there are two u vectors, each with 20 entries, two v vectors each with 10
entries, and two singular values. Add those up: 2*20 + 2*10 + 2 = 62. This implies that
the image can be represented by 62 values instead of 200. If you look back at the image,
you can see that there are many dependent columns and very few independent ones.

This is a simple image and a small pixel matrix, but it should give you a sense of how SVD
can decompose an image in a way that identifies how much of the image is redundant,
and therefor can be compressed.

4.7 Where to Learn More

We Recommend a Singular Value Decomposition. This American Mathematical Society pub-
lication focuses the geometry of SVD. What we like about the article is that it shows both

26 Chapter 4. SINGULAR VALUE DECOMPOSITION

graphically and numerically how SVD can be used for data compression on images and
for noise reduction. The data compression example in your workbook is based on this
article. https://www.ams.org/publicoutreach/feature-column/fcarc-svd

Sign Ambiguity in Singular Value Decomposition (SVD). This is a good article for those
who want a deeper understanding of sign ambiguity. https://www.educative.io/blog/
sign-ambiguity-in-singular-value-decomposition

Singular Value Decomposition Tutorial. This PDF starts by defining points, space, and vectors
and works through all the concepts you need to tackle SVD. It is one of the few resources
that has a completely worked out example of manually calculating SVD. The example in
this chapter is from that tutorial. If you read the entire paper, you will find that it is a good
review of the concepts you have studied in previous chapters. https://rb.gy/j6s0w

https://www.ams.org/publicoutreach/feature-column/fcarc-svd
https://www.educative.io/blog/sign-ambiguity-in-singular-value-decomposition
https://www.educative.io/blog/sign-ambiguity-in-singular-value-decomposition
https://rb.gy/j6s0w

Chapter 5

Tackling Difficult Problems:
Positive Semidefinite Matrices

With all the computing power available today, you would think no problem would be
too difficult to tackle. However, this is not the case. There is a category of problems
called NP (nondeterministic polynomial time) whose solution is easy to verify, but whose
computation is difficult to perform. This is because there is no straightforward algorithm
and any brute-force method would take too much time. For these problems, all we can
do is to develop an efficient algorithm that can find a solution in a reasonable amount
of time. While the solution might not be the most optimal, the goal is to find the best
solution possible in a short time.

As you learn more about optimization techniques, you will come across many efficiency
algorithms that have been used throughout the years. In the 1990s, the field of optimiza-
tion changed with the discovery that algorithms based on semidefinite positive matrices
can achieve a higher efficiency than seen in the past. Today, there is an entire field of
programming called Semidefinite Programming that is based on the use of semidefinite
positive matrices.

First we will take a look at what some of the NP problems are. Next, we will describe the
intuition behind semidefinite positive matrices. We will take a look at one NP problem,
then introduce the Python module to use for solving these problems.

5.1 NP Problems

In the world of mathematics, easy problems are referred to as P, or polynomial time,
problems. In simple terms, this means the problem can be solved quickly, and it is easy to
verify that the solution is correct. Addition, subtraction, division, multiplication, square
roots, and matrix-vector multiplication are just a few examples. NP problems, as stated
in the introduction, can’t be computed in a reasonable amount of time, but solutions are
usually easy to verify. The game of Sudoku is one such example. It is easy to verify a
correct solution, but writing a generalized algorithm to solve any Sudoku game is an NP
problem.

NP problems show up in many other situations, such as:

• Designing robust communication networks

27

28 Chapter 5. TACKLING DIFFICULT PROBLEMS: POSITIVE SEMIDEFINITE MATRICES

• Scheduling tasks without conflicts

• Managing supply chains

• Detecting patterns in biological networks

• Figuring out subgroups in social networks

• Predicting the structure of proteins

For each of these , think of large scale problems for which there are many variables. A
cloud computing company that provides AI services to thousands of clients must be able
to schedule tasks efficiently and in a timely manner, as well as manage the power needed
for the computers and cooling the data center. Supply chain management is crucial to
figuring out how to pick up, transport, and distribute goods to help provide disaster
relief. Understanding protein structure is important for designing drugs that can tackle
specific conditions. All we can do for each of these situations is to find an optimal solution,
but we cannot find the definitive solution.

5.2 A Past Approach: Minimizing Errors in Neural Networks

When neural networks were first being developed to recognize things (faces, letters, music,
and so on), the goal was to calculate weights between network nodes that would minimize
the recognition error. The error space could be visualized as a surface of valleys and
hills. The lowest point would have the least error. The idea behind the iterative weight
calculations for training the network was to descend down the gradient until reaching the
low point. Without getting into the mathematics, you can see by looking at this figure that
there are two valleys. Some neural network training resulted in ending at a low point, but
not the lowest point. Wouldn’t it be great if you could formulate an optimization problem
so that you would be guaranteed to land at the lowest point? That is where semidefinite
programming can help.

Figure 5.1: FIXME.

Section 5.3 POSITIVE DEFINITE AND SEMIDEFINITE MATRICES 29

5.3 Positive Definite and Semidefinite Matrices

Unlike matrices that are defined by their content (such as identity matrix, zero matrix,
and diagonal matrix), positive definite and semidefinite matrices are characterized by the
result they produce. They have an analog in the scalar world, so let’s first look at that.
Let’s take the scalars a and b and treat them as vectors. ab is then the dot product. If
a > 0, then ab will take on the sign of b. If a < 0, then ab will have the opposite sign of
b. If you look at this in a graph, you can see that in the first case, ab stays on the same
side of the origin, but in the second case, ab flips

For a = [2], b = [4]

For a = [3], b = [−4]. the result of multiplication flips a to the other side of the graph.

The notion of “staying on the same side” is positive definite. The notion of flipping is
negative definite. Positive definite means that x > 0, so the result is a positive number.
Positive semidefinite means that x >= 0, so the result is a non-negative number.

If you can formulate a problem as a positive semidefinite matrix, then you automatically
constrain the result to the “same side.” This constraint results in higher algorithmic effi-
ciency.

Let’s look at the formal definition:

A matrix is positive definite if, and only if:

xTAx > 0, x, x 6= 0

A matrix is positive semidefinite, if, and only if:

xTAx ≥ 0

30 Chapter 5. TACKLING DIFFICULT PROBLEMS: POSITIVE SEMIDEFINITE MATRICES

Further, a positive semidefinite matrix had an important property. Its eigenvalues are ≥ 0.
The eigenvalues of a positive definite matrix are > 0.

Take the triplet (a, b, c) and the symmetric matrix:1 a b

a 1 c

b c 1

 ≥ 0

For what values of a, b, c is this matrix positive semidefinite? If you iterate through all
possible combinations of a,b,c, then compute the eigenvalues for each matrix, you will
find that some (like 0, 0, 0) result in a postive semidefinite matrix and some (like 2, 2, 2)
are not positive semidefinite. If you plot the set of triplets that result in a semidefinite
matrix, you will see an elliptope. This shape guarantees an optimal solution.

Figure 5.2: Elliptope visualized.

5.4 Identifying and Constructing a Positive Semidefinite Matrix

In the last section, you saw that being symmetric does not guarantee a positive semidef-
inite matrix. You also saw that a matrix of positive values does not guarantee a positive
semidefinite matrix. The only way to check for positive semidefinite is to calculate the
eigenvalues, which you learned in a previous workbook.

A surefire way to construct a positive semidefinite matrix is:

AAT

Section 5.5 THE MAX CUT PROBLEM 31

Exercise 4 Figuring out if a matrix is positive semidefinite

.Is this matrix positive definite? Show
your work. [

2 2

2 0

]

Answer on Page 36

Working Space

Exercise 5 Creating a positive semidefinite matrix

.Using any 3 by 3matrix, create a positive
semidefinite matrix.Then show it is posi-
tive semidefinite by calculating its eigen-
values. You can either compute this by
hand or using Python. In either case,
show your work.

Answer on Page 36

Working Space

5.5 The Max Cut Problem

A famous NP problem is Max Cut. Given a graph of interconnected nodes, cut the graph
to create two sets of nodes, such that the cut goes through as many edges as possible.
(You can’t cut an edge more than once.) Max Cut is important for binary classification in
machine learning, circuit design, statistical physics, and more. There is no algorithm that
will provide an exact solution. (If you could find one, you would be eligible to win a huge
prize from the Clay Mathematics Institute!) Instead, you will see how to approximate a
solution to this problem using a positive semidefinite matrix and a technique developed
by mathematicians Michel Goemans and David Williamson.

You won’t see all the complete details here, as this section is meant to be a quick intro-
duction to how you can apply positive semidefinite matrices.

Take this simple graph of five nodes and six edges. Each node in the graph will take on

32 Chapter 5. TACKLING DIFFICULT PROBLEMS: POSITIVE SEMIDEFINITE MATRICES

one of two values (1 or -1) to show which set they fall into after a cut is made. For any
two connected nodes, xi · xj = 1 if xi = xj and −1 otherwise.

If you randomly assign 1 and −1 to the nodes, the chance of making the max cut is 0.5.
By using semidefinite programming, you can achieve an algorithmic efficiency of 0.87.

The Goemans-Williamson technique can be used for any optimization problem where the
variables take on the values of 1 and −1.

0 1

2 3

4

0 10

22 3

1

3

1

4

3

4

Figure 5.3: MaxCut algorithm visualized.

As a list of edges the graph is:

edges = [(0, 1), (0, 2), (1, 3), (1, 4), (2, 3), (3, 4)]

The optimization problem can be formulated as:

Max
∑

edges(i,j)

1− xixj

2

for
xi ∈ {−1, 1}

However, instead of allowing xi to be scalar, Goemans-Williamson defines xi as unit vec-
tors.

xi ∈ Rn, xi = 1

and that makes the optimization equation:

Max
∑

edges(i,j)

1− xTi xj

2

It is this ”relaxation” that gets us to a semidefinite matrix, because we can now rewrite
the problem as a positive semidefinite matrix:

X =
[
xTi xj

]
i,j

Section 5.6 THE MAX CUT PROBLEM SOLVED IN PYTHON 33

Python has a module for solving optimization problems. Using this, you will get an
optimum matrix, but to get the unit vectors, you will need to take the square root of the
matrix.

X = [x1...x1n] [x1...x1n]
T

Next we need to go from unit vectors to scalars, using a process called rounding.

xi ∈ Rn → xi ∈ {−1, 1}

Goemans-Williamson leveraged the fact that the end point of a unit vector is on a sphere.
They generated a random plane to bisect the sphere. A vector on one side of the plane is
assigned the value of 1 and a vector on the other side a value of −1.

You can then assign the scalar values to the nodes and make the cut accordingly. This
particular cut will be 5, as shown.

Figure 5.4: The result of the MaxCut.

5.6 The Max Cut Problem Solved in Python

MaxCut Problem
import numpy as np
import scipy
from scipy.linalg import sqrtm
cvxpy is a python module for solving optimization problems
import cvxpy as cp

define the edges of the graph
edges = [(0,1),

(0,2),
(1,3),
(1,4),
(2,3),
(3,4)]

Declare the matrix X to be positive semidefinite

34 Chapter 5. TACKLING DIFFICULT PROBLEMS: POSITIVE SEMIDEFINITE MATRICES

X = cp.Variable((5,5),symmetric=True)
constraints = [X >> 0]

Set diagonals to 1 to get unit vectors
constraints += [

X[i,i] == 1 for i in range(5)
]

Set the objective function
objective = sum(05.*(1 - X[i,j]) for (i,j)in edges)

Set up the problem to maximize using the objective function and
keeping within the set constraints
prob = cp.Problem(cp.Maximize(objective), constraints)

Returns a positive semidefinite matrix
print(prob.solve())

To get the vectors, take square root of the matrix
x = sqrtm(X.value)

Generate a random hyperplane
u = np.random.randn(5) # normal to random hyperplane

Pick values according to which side of the hyperplane the vectors are on
x = np.sign(x @ u)

Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 6)

Compute dot product of a and b:

1 ∗−4+ 3 ∗ 6 = −4+ 18 = 14

Compute the dot product of b and b

16+ 36 = 52

14/52 ∗ (−4, 6) = (−1.076, 1.61)

Answer to Exercise 2 (on page 10)

The first vector of the orthogonal subspace is:

v1 = x1 = (1, 1, 1)

The second vector of the subspace is a projection of x2 onto v1.

v2 = x2 −
x2v1
v1v1

v1

Substitute the values:

v2 = (0, 1, 1) −
(0, 1, 1)(1, 1, 1)

(1, 1, 1)(1, 1,−1)
(1, 1, 1)

v2 = (0, 1, 1) − (2/3)(1, 1, 1)

v2 = (−2/3, 1/3, 1/3)

Normalize:
v1 = v1/

√
|v1|

v1 = (1, 1, 1)/
√

|v1|

v1 = (0.577, 0.577, 0.577)

v2 = v2/
√

|v2|

35

36 Chapter A. ANSWERS TO EXERCISES

v2 = (0, 1, 1)
√

|v2|

v2 = (−0.816, 0.408, 0.408)

Answer to Exercise 3 (on page 24)

U =

[
−0.70710678 −0.70710678

−0.70710678 0.70710678

]
Singularvalues = [3.464101623.16227766]

VT =

−0.408 −0.816 −0.408

−0.894 0.447 0.0

−0.183 −0.365 0.9129



Answer to Exercise 4 (on page 31)

Yes. Its eigenvalues are
2, 2

Answer to Exercise 5 (on page 31)

The answer depends on the 3 by 3 matrix you chose.

Index

eigenvalue, 13
calculating, 14

eigenvector, 13

Gram-Schmidt process, 7
python script for, 10

Max Cut, 31
python script for , 33

projections, 3
formula for, 3
visualization of, 3

singular value decomposition, 19
svd, 19

python script for, 23

37

	Projections
	Projections in Python
	Where to Learn More

	The Gram-Schmidt Process
	The Process
	Example Calculation
	The Gram-Schmidt Process in Python
	Where to Learn More

	Eigenvectors and Eigenvalues
	Definition
	Finding Eigenvalues and Eigenvectors
	Example
	Eigenvalues and Eigenvectors in Python
	Summary
	Where to Learn More

	Singular Value Decomposition
	Definition
	Applications of SVD
	Calculating SVD Manually
	Singular Value Decomposition with Python
	Sign Ambiguity
	SVD Applied to Image Compression
	Where to Learn More

	Tackling Difficult Problems: Positive Semidefinite Matrices
	NP Problems
	A Past Approach: Minimizing Errors in Neural Networks
	Positive Definite and Semidefinite Matrices
	Identifying and Constructing a Positive Semidefinite Matrix
	The Max Cut Problem
	The Max Cut Problem Solved in Python

	Answers to Exercises
	Index

