
Contents

1 Projections 3
1.1 Projections in Python 6
1.2 Where to Learn More 6

2 The Gram-Schmidt Process 7
2.1 The Process 7
2.2 Example Calculation 8
2.3 The Gram-Schmidt Process in Python 10
2.4 Where to Learn More 11

3 Eigenvectors and Eigenvalues 13
3.1 Definition 14
3.2 Finding Eigenvalues and Eigenvectors 14
3.3 Example 14
3.4 Eigenvalues and Eigenvectors in Python 17
3.5 Where to Learn More 17

4 Singular Value Decomposition 19
4.1 Definition 19
4.2 Applications of SVD 19
4.3 Calculating SVD Manually 20
4.4 Singular Value Decomposition with Python 23
4.5 Sign Ambiguity 24
4.6 SVD Applied to Image Compression 24

1

2

4.7 Where to Learn More 25

A Answers to Exercises 27

Index 29

Chapter 1

Projections

The word ”projection” has two main meanings in everyday life. One is a projection as
a forecast or estimate of something in the future based on the current situation; another
is the result of shining a light to cast a shadow or show a movie. Both these definitions
apply to mathematical projection.

Projections are used in many fields, such as science, math, engineering, and finance. Here
are a few examples:

• Investors evaluate risk and return of a portfolio by projecting an asset’s return onto
a reference portfolio.

• Astronomers analyze the motion of stellar objects by projecting the object’s true
motion onto the plane of the sky.

• Robotics engineers use projections to prevent robots from running into obstacles by
projecting the robot’s position onto the optimal path.

Mathematically, a projection describes the relationship of one vector to another in terms
of direction and orthogonality. Given two vectors, u and v, the projection of u onto v
separates u into two components. The first component signifies how much u lies in the
direction of v. The second signifies the component of u that is orthogonal (perpendicular)
to v.

The figure depicts a projection. The perpendicular line dropped from the end of u is the
orthogonal component. The portion of u that lies in the direction of v is the blue segment.

3

4 Chapter 1. PROJECTIONS

u

v

You can also think of a projection as the shadow cast by one vector onto the other by an
overhead light.

Light

u

v

The projected vector can be in any direction and its length can extend beyond the vector
onto which it is projecting.

5

u

v

To calculate the projection of v onto u, use this formula:

projv(u) =
u · v
‖ v ‖2

v

Note that the denominator is the magnitude squared of vector v.

(
√
a2
1 + a2

2 + ...+ a2
n)

2

You learned previously that this is the same as the dot product of a vector with itself.

v · v

In the examples that follow, we will simplify to the dot product notation.

Let’s look at a specific example:
u = (1, 4, 6)

v = (−2, 6, 2)

projv(u) =
u · v
‖ v ‖2

v

projv(u) =
(1, 4, 6) · (−2, 6, 2)

(−2, 6, 2) · (−2, 6, 2)
(−2, 6, 2)

projv(u) = (
34

44
(−2, 6, 2)

projv(u) = (−1.545, 4.64, 1.545)

6 Chapter 1. PROJECTIONS

As youwork your way through this course, youwill have a chance to apply the calculations
you learn in this chapter to a variety of problems. Specifically, the next chapter shows how
to transform a set of linearly independent vectors into a set of orthogonal ones. Projections
are essential to that transformation.

Exercise 1 Projections

.Find the projection of a on b where:

a = (1, 3)

b = (−4, 6)

Answer on Page 27

Working Space

1.1 Projections in Python

Create a file called vectors_projections.py and enter this code:

import numpy as np

define two vectors
a = np.array([1, 4, 6])
b = np.array([-2, 6, 2])

use np.dot() to calculate the dot product
projection_a_on_b = (np.dot(a, b)/np.dot(b, b))*b

print("The projection of vector a on vector b is:", projection_a_on_b)

1.2 Where to Learn More

Watch this Introduction to Projections from Khan Academy https://rb.gy/yf0i3

https://rb.gy/yf0i3

Chapter 2

The Gram-Schmidt Process

The Gram-Schmidt process is a method use to transform a set of linearly independent
vectors to a set of orthogonal (perpendicular) vectors. The original vectors and the trans-
formed vectors span the same subspace.

The process was named after two mathematicians: Jørgen Pedersen Gram, a Danish ac-
tuary mathematician, and Erhard Schmidt, a German mathematician. The men devel-
oped the orthogonalization process independently. Gram introduced the process in 1883,
whereas Schmidt did his work in 1907. It was not named the Gram-Schmidt process un-
til sometime later, after both mathematicians became well known in the mathematical
community.

In the last chapter, you learned how to calculate a projection of one vector on another.
Given two vectors, u and v, the projection separates u into the part that is orthogonal to v

and the part that has a dependency with v. The Gram-Schmidt process builds on the no-
tion of projections to iteritively strip away dependencies between vectors until the vectors
that remain are orthogonal. If there happens to be a vector that is a linear combination of
the others, that vector will be reduced to the zero vector. The vectors that remain define
a new basis for space spanned by the original set of vectors.

Gram-Schmidt has many practical applications in science and engineering, such as:

1. In signal processing, it can represent an audio signal with fewer components making
it easier to isolate and remove noise.

2. In statistics and data analysis, it can reduce the complexity of a dataset so that it is
easier to see which aspects or features contribute to the analysis.

2.1 The Process

The Gram-Schmidt process orthonormalizes a set of vectors in an inner product space,
most commonly the Euclidean space Rn. The process takes a finite, linearly independent
set S = {v1, v2, . . . , vk} for k ≤ n, and generates an orthogonal set S ′ = {u1, u2, . . . , uk} that
spans the same k-dimensional subspace of Rn as S.

Let’s look at how the process works. Given a set of vectors S = {v1, v2, . . . , vk}, the Gram-
Schmidt process is as follows:

7

8 Chapter 2. THE GRAM-SCHMIDT PROCESS

1. Let u1 = v1.

2. For j = 2, 3, . . . , k:

(a) Let wj = vj −
∑j−1

i=1
〈vj,ui〉
〈ui,ui〉ui

(b) Let uj = wj

Here, 〈., .〉 denotes the inner product.

The set of vectors S ′ = {u1, u2, . . . , uk} obtained from this process is orthogonal, but not
necessarily orthonormal. To create an orthonormal set, you simply need to normalize each
vector ui to unit length. That is, u ′

i =
ui

‖ui‖ , where ‖.‖ denotes the norm (or length) of a
vector.

Among other things, making vectors orthonormal simplifies calculations makes it easier to
define rotations and transformations, and provides a framework for calculations in fields
such as quantum mechanics.

2.2 Example Calculation

Given a set of linearly independent vectors, we will use the Gram-Schmidt process to find
an orthogonal basis.

Let
W = Span(x1, x2, x3)

where
x1 = (1, 2,−2)

x2 = (1, 0,−4)

x3 = (5, 2, 0)

The three orthogonal vectors will define the same subspace as the original vectors.

The first vector of the orthogonal subspace is easy to define. We set it to be the same as
x1.

v1 = x1 = (1, 2,−2)

The second orthogonal vector is a projection of x2 onto v1. You learned projections in the
last chapter, so this should be fairly straightforward.

Section 2.2 EXAMPLE CALCULATION 9

v2 = x2 −
x2v1
v1v1

v1

Substitute the values:

v2 = (1, 0,−4) −
(1, 0,−4)(1, 2,−2)

(1, 2,−2)(1, 2,−2)
(1, 2,−2)

Calculate the coefficient for v1:

v2 = (1, 0,−4) −
9

9
(1, 2,−2)

Perform the subtraction:
v2 = (0,−2,−2)

The third vector for the orthogonal subspace is a projection onto v1 and v2.

v3 = x3 −
x3v1
v1v1

v1 −
x3v2
v2v2

v2

Substitute the values:

v3 = (5, 2, 0) −
(5, 2, 0)(1, 2,−2)

(1, 2,−2)(1, 2,−2)
(1, 2,−2) −

(5, 2, 0)(1, 0,−4)

(1, 0,−4)(1, 0,−4)
(1, 0,−4)

v3 = (5, 2, 0) − (9/9)(1, 2,−2) − (−4/8)(1, 0,−4)

v3 = (5, 2, 0) − (1, 2,−2) + (1/2)(1, 0,−4)

v3 = (5, 2, 0) − (1, 2,−2) + (0,−1,−1)

v3 = (4,−1, 1)

This set of vectors is orthogonal, so we need to normalize them so that the vectors are
orthonormal. Recall that an orthonormal vector has a length of 1 and is computed using
this formula:

normalizedVector = vector/np.sqrt(np.sum(vector ∗ ∗2))

Thus the normalized set of vectors is:

v1 = (0.33, 0.67,−0.67)

v2 = (0.0,−0.71,−0.71)

v3 = (0.94,−0.24, 0.24)

10 Chapter 2. THE GRAM-SCHMIDT PROCESS

Exercise 2 Gram-Schmidt Process

.Use the Gram-Schmidt process to to find
an orthogonal basis for the span defined
by x1, x2 where:

x1 = (1, 1, 1)

x2 = (0, 1, 1)

Answer on Page 27

Working Space

2.3 The Gram-Schmidt Process in Python

Create a file called vectors_gram-schmidt.py and enter this code:

import numpy to perform operations on vector
import numpy as np

Find an orthogonal basis for the span of these three vectors
x1 = np.array([1, 2, -2])
x2 = np.array([1, 0, -4])
x3 = np.array([5, 2, 0])

v1 = x1
v1 = x1
print("v1 = ",v1)

v2 = x2 - (the projection of x2 on v1)
v2 = x2 - (np.dot(x2,v1)/np.dot(v1,v1))*v1
print("v2 = ", v2)

v3 = x3 - (the projection of x3 on v1) - (the projection of x3 on v3)
v3 = x3 - (np.dot(x3,v1)/np.dot(v1,v1))*v1 - (np.dot(x3,v2)/np.dot(v2,v2))*v2
print("v3 =", v3)

Next, normalize each vector to get a set of vectors that is both orthogonal and orthonormal:
v1_norm = v1 / np.sqrt(np.sum(v1**2))
v2_norm = v2 / np.sqrt(np.sum(v2**2))
v3_norm = v3 / np.sqrt(np.sum(v3**2))

Section 2.4 WHERE TO LEARN MORE 11

print("v1_norm = ", v1_norm)
print("v2_norm = ", v2_norm)
print("v3_norm = ", v3_norm)

2.4 Where to Learn More

Watch this video from Khan Academy about the Gram-Schmidt process: https://www.
khanacademy.org/math/linear-algebra/alternate-bases/orthonormal-basis/v/linear-algebra-the-gram-schmidt-process

https://www.khanacademy.org/math/linear-algebra/alternate-bases/orthonormal-basis/v/linear-algebra-the-gram-schmidt-process
https://www.khanacademy.org/math/linear-algebra/alternate-bases/orthonormal-basis/v/linear-algebra-the-gram-schmidt-process

Chapter 3

Eigenvectors and Eigenvalues

Like many specialized disciplines, Linear Algebra uses many unfamiliar terms whose ori-
gins you might wonder about. Eigenvectors and eigenvalues are two of them. If you know
German, you will recognize that eigen means inherent or a characteristic attribute. Named
by the German mathematician David Hilbert, an eigenvector mathematically describes a
characteristic feature of an object that remains unchanged after transformation. You can
think of an eigenvector as the direction that doesn not change direction. An eigenvector
characterizes a linear transformation, whereas its eigenvalue tells how much the vector is
scaled. Eigenvalues can be negative or positive. A negative value indicates the direction
of the eigenvector is reversed.

Eigenvalues and eigenvectors are a way to break down matrices, which can simplify many
calculations and enable us to understand various properties of the matrix. They are widely
used in physics and engineering for stability analysis, vibration analysis, and many other
applications.

Let’s look at a visual example.

You can see that the image on the right is a skewed version of the image on the left. Look
closely at the vectors and you will notice that one of the vectors is pointing in the same
direction in both images, while the direction of the other two vectors has changed. The
eigenvector is the one at the bottom that points to 0 degrees (which you can think of due
east) in both images. So, the characteristic attribute of both images is their horizontal
direction.

When you overlay the vectors from one image over the other, you will notice that the
horizontal vector, while the same direction in both images, is a bit longer in the skewed
version. The scale of the stretch is described by an eigenvalue.

13

14 Chapter 3. EIGENVECTORS AND EIGENVALUES

3.1 Definition

Given a square matrix A, a non-zero vector v is an eigenvector of A if multiplying A by v

results in a scalar multiple of v. In other words:

Av = λv (3.1)

where λ is a scalar known as the eigenvalue corresponding to the eigenvector v.

3.2 Finding Eigenvalues and Eigenvectors

You find the eigenvalues of a matrix A by solving the characteristic equation:

det(A− λI) = 0 (3.2)

where det(.) denotes the determinant, I is the identity matrix of the same size as A, and
λ is a scalar.

Once your find the eigenvalues, you can find the corresponding eigenvectors by substi-
tuting each eigenvalue into the equation Av = λv, and solving for v.

3.3 Example

For a 2× 2 matrix A =

(
a b

c d

)
, the characteristic equation is:

(a− λ)(d− λ) − bc = 0 (3.3)

Section 3.3 EXAMPLE 15

Solving this equation gives the eigenvalues. Substituting each eigenvalue back into the
equation Av = λv gives the corresponding eigenvectors.

Let matrix A = [
5 4

1 2

]

The characteristic equation is:
|A− λI| = 0[

5− λ 4

1 2− λ

]
= 0

(5− λ)(2− λ) − (4)(1) = 0

10− 5λ− 2λ+ λ2− 4 = 0

λ2− 7λ+ 6 = 0

(λ− 6)(λ− 1) = 0

λ = 6, λ = 1

Now that you have the eigen values you can substitue these values into the equation:

|A− λI| = 0

For = 1:
(A− λI)v = O[

5− 1 4

1 2− 1

] [
x

y

]
=

[
0

0

]
[
4 4

1 1

] [
x

y

]
=

[
0

0

]
Next, use elementary row transformation by multiplying row 2 by 4, then subtracting row
1. [

4 4

0 0

] [
x

y

]
=

[
0

0

]

Now you can expand as an equation:

4x+ 4y = 0

Assume y = w

4x = −4w

x = −w

16 Chapter 3. EIGENVECTORS AND EIGENVALUES

The solution is:

[
x

y

]
=

[
−w

w

]
= w

[
−1

1

]

So the eigenvector is:

[
−1

1

]

Now we need to substitute the other eigenvalue, 6, into the equation and follow the same
procedure for finding the eigenvector.

[
5− 6 4

1 2− 6

] [
x

y

]
=

[
0

0

]
[
−1 4

1 −4

] [
x

y

]
=

[
0

0

]

Next, use elementary row transformation by adding row 1 to row 2.

[
−1 4

0 0

] [
x

y

]
=

[
0

0

]

Expand as an equation:

−x+ 4y = 0

Assumey = w

−x+ 4w = 0

x = 4w

Section 3.4 EIGENVALUES AND EIGENVECTORS IN PYTHON 17

The solution is: [
x

y

]
=

[
4w

w

]
= w

[
4

1

]
So the eigenvector is: [

4

1

]
In conclusion, the eigenvectors of the given 2 x 2 matrix are:[

−1

1

]
and

[
4

1

]

3.4 Eigenvalues and Eigenvectors in Python

Create a file called vectors_eigen.py and enter this code:

import numpy to perform operations on vector
import numpy as np
from numpy.linalg import eig

a = np.array([[2, 2, 4],
[1, 3, 5],
[2, 3, 4]])

eigenvalue,eigenvector = eig(a)

The values are not in any particular order
print('Eigenvalues:', eigenvalue)

The eig function returns the normalize vectors
print('Eigenvectors:', eigenvector)

3.5 Where to Learn More

Watch this video from Khan Academy, Introduction to Eigenvectors: https://rb.gy/mse7i

https://rb.gy/mse7i

Chapter 4

Singular Value Decomposition

In the previous chapter, you learned how to calculate eigenvalues and eigenvectors. How-
ever, not every matrix has them. For those matrices, singular values and singular vectors
are analogous features.

Singular Value Decomposition (SVD) is a matrix factorization technique that breaks down
a matrix into three matrices that represent the structure and properties of the original
matrix. The decomposed matrices make calculations easier and provide insight into the
original matrix. Essentially, SVD can transform a high dimension, highly variable set of
data into a set of uncorrelated data points that reveal subgroupings that you might not
have noticed in the original data. SVD tells us that a linear transformation can be thought
of as a rotation, scaling, and another rotation.

4.1 Definition

For any m× n matrix A, SVD decomposes the matrix into three matrices.

A = UΣVT (4.1)

• U is an orthogonal matrix whose size is m×m. Its columns are the eigenvectors of
AAT . These are the left singular vectors of A. Because U is orthogonal, UTU = I.

• V is an orthogonal matrix whose size is n×nmatrix. Its columns are the eigenvectors
of ATA. These are the right singular vectors of A. Because V is orthogonal, VTV = I.

• Σ is a diagonal matrix that is the same size as A. Its diagonal contains the singular
values of A, arranged in descending order. These values are the square roots of the
eigenvalues of both ATA and AAT .

4.2 Applications of SVD

SVD has numerous applications:

• It is used in machine learning and data science to perform dimensionality reduction,
particularly through a technique known as Principal Component Analysis (PCA).

19

20 Chapter 4. SINGULAR VALUE DECOMPOSITION

• In numerical linear algebra, SVD is used to solve linear equations and compute
matrix inverses in a more numerically stable way.

• It is used in image compression, where low-rank approximations of an image matrix
provide a compressed version of the original image.

4.3 Calculating SVD Manually

You might be inclined to skip this example because the computations are lengthy. Why
would anyone do this when they can use a computing language, like Python, to calculate
the SVD with essentially one command? We show this so you can understand what goes
on ”under the hood” when you compute SVD programmatically.

After you read through this example, you will see how to use Python to compute SVD.
Next, you will see an example of using SVD for image compression. Finally, you will be
given an exercise to compute the SVD. For this, you will need to write your own Python
script.

Let’s find the SVD for matrix A. Recall that we want to find U. Σ, and VT such that:

A = UΣVT (4.2)

A =

[
3 1 1

−1 3 1

]

U = AAT

Calculating
AAT

will give us a square matrix:

AT =

3 −1

1 3

1 1


AAT =

[
3 1 1

−1 3 1

]3 −1

1 3

1 1

 =

[
11 1

1 11

]
Next, we will find the eigenvalues and eigenvectors of AT . This is a chance to apply what
you learned in the previous chapter. We know that:

Av = λv (4.3)

Section 4.3 CALCULATING SVD MANUALLY 21

So: [
11 1

1 11

] [
x1
x2

]
= λ

[
x1
x2

]
Rewrite as a set of equations:

11x1 + x2 = λx1

x1 + 11x2 = λx2

Then rearrange:
(11−λ)x1 + x2 = 0

x1 + (11−λ)x2 = 0

Solve for λ: [
(11− λ), 1
1, (11− λ)

]
= 0

And as equations:
(11−λ)(11−λ)−1·1 = 0

(λ−10)(λ−12) = 0

These are the eigenvalues.
λ = 10

λ = 12

When substituted into the original equations, you get the eigenvectors. For

λ = 10

:
(11−10)x1 + x2 = 0

x1 = −x2

We will set
x1

to 1 and get this eigenvector:
[1,−1]

For
λ = 10

:
(11−12)x1 + x2 = 0

x1 = x2

We will set
x1

to 1 and get this eigenvector:
[1, 1]

22 Chapter 4. SINGULAR VALUE DECOMPOSITION

The matrix is: [
1 1

1 −1

]
Next, you need to apply the Gram-Schmidt process to the column vectors. After that, you
will have U, the m×m matrix whose columns are eigenvectors of AAT . These are the left
singular vectors of A. After you apply Gram-Schmidt, you should end up with:

U =

[
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

]
The process for calculating V is the same as the calculation for U, except:

V = ATA

ATA =

3 −1

1 3

1 1

[
3 1 1

−1 3 1

]
=

10 0 2

0 10 4

2 4 2


After applying the process we applied to solve for U, you get:

V =

1/
√
6 2/

√
5 1/

√
30

2/
√
6 −1/

√
5 2/

√
30

1/
√
6 0 −5/

√
30


However, you want VT :

VT =

 1/
√
6 2/

√
6 1/

√
6

2/
√
5 −1/

√
5 0

1/
√
30 2/

√
30 −5/

√
30


You have only to calculate Σ, a diagonal matrix that is the same size as A. The diagonal
contains the singular values of A, arranged in descending order. These are the square
roots of the eigenvalues of both ATA and AAT .

Because the non-zero eigenvalues of U are the same as V, let’s use the eigenvalues we
calculate for U, 10 and 12. Note that Σ will not be of the correct dimension to reconstruct
the orignal matrix unless we add a column. By adding a zero column you’ll be able to
multiply between U and V :

Σ =

[√
12 0 0

0
√
12 0

]
You can check your work by multiplying the decomposed matrices. This should return
the orginal matrix.

A = UΣVT

= U =

[
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

] [√
12 0 0

0
√
12 0

] 1/
√
6 2/

√
6 1/

√
6

2/
√
5 −1/

√
5 0

1/
√
30 2/

√
30 −5/

√
30



Section 4.4 SINGULAR VALUE DECOMPOSITION WITH PYTHON 23

=

[√
12/

√
2

√
10/

√
2 0√

12/
√
2 −

√
10/

√
2 0

] 1/
√
6 2/

√
6 1/

√
6

2/
√
5 −1/

√
5 0

1/
√
30 2/

√
30 −5/

√
30


=

[
3 1 1

−1 3 1

]

4.4 Singular Value Decomposition with Python

Create a file called vectors_decomposition.py and enter this code:

Singular-value decomposition
import numpy as np
from numpy import array
from scipy.linalg import svd
from numpy import diag
from numpy import dot
from numpy import zeros

Define a matrix
A = array([[1, 2], [3, 4], [5, 6]])

print("Matrix (3x2) to be decomposed: ")
print(A)

CalculateSVD
U, S, VT = svd(A)
print("Matrix (3x3) that represents the left singular values of A:")
print(U)
print("Singular values:")
print(S)
print("Matrix (2x2) that represents the right singular values of A:")
print(VT)

Check if the decomposition by rebuilding the original matrix
The singular values must be in an m x n matrix
Create a zero matrix with the same dimension as A
Sigma = zeros((A.shape[0], A.shape[1]))
Populate Sigma with n x n diagonal matrix
Sigma[:A.shape[1], :A.shape[1]] = diag(S)
Reconstruct the original matrix
A_Rebuilt = U.dot(Sigma.dot(VT))
print("Original matrix:")
print(A_Rebuilt)

24 Chapter 4. SINGULAR VALUE DECOMPOSITION

4.5 Sign Ambiguity

You might notice that at times, the absolute values in the U and VT matrices are correct,
but that the signs vary from what you see as the answer. For example, when you compare
a manually calculated SVD with one done in Python the signs might not agree. Both
decompositions of A are valid. Both decompositions will satisfy:

A = UΣVT

Note that the S diagonal values will always be positive.

The sign ambiguity has implications. For example, when using SVD to compress data, if
some of the signs are flipped, the data can have artifacts. At this point in your education,
you don’t need to concern yourself with it, except when you are comparing SVD results
for the same matrix.

Exercise 3 Single Value Decomposition

.Modify your Python code to calculate
SVD for the matrix in the worked out
example. Did you arrive at the same an-
swer? Keep in mind that Python will
compute square roots and present frac-
tions as decimal. Take a look at the signs
for the values in the U and VT matrices.
Are they the same, or is this an example
of sign ambiguity?

Answer on Page 28

Working Space

4.6 SVD Applied to Image Compression

This image consists of a grid of 20 by 10 pixels, each of which is either black or white.

Section 4.7 WHERE TO LEARN MORE 25

It is a simple image that has only two types of columns–ideal for data compression. A
row is either the first pattern or the second.

We can represent the data as a 20 by 10 matrix whose 200 entries are either 0 for black or
1 for white. 

00001000100000001010

00001111111111111010

00001000100000001010

00001000100000001010

00001000100000001010

00001000100000001010

00001000100000001010

00001111111111111010

00001000100000001010

00001000100000001010


When you perform an SVD on this matrix, there are only two non-zero singular values,
6.79 and 3.72. (You are welcome perform the calculation in Python.) Thus, you can
represent the matrix as:

A = U1S1V1 +U2S2V2

This means there are two u vectors, each with 20 entries, two v vectors each with 10
entries, and two singular values. Add those up: 2*20 + 2*10 + 2 = 62. This implies that
the image can be represented by 62 values instead of 200. If you look back at the image,
you can see that there are many dependent columns and very few independent ones.

This is a simple image and a small pixel matrix, but it should give you a sense of how SVD
can decompose an image in a way that identifies how much of the image is redundant,
and therefor can be compressed.

4.7 Where to Learn More

We Recommend a Singular Value Decomposition. This American Mathematical Society pub-
lication focuses the geometry of SVD. What we like about the article is that it shows both

26 Chapter 4. SINGULAR VALUE DECOMPOSITION

graphically and numerically how SVD can be used for data compression on images and
for noise reduction. The data compression example in your workbook is based on this
article. https://www.ams.org/publicoutreach/feature-column/fcarc-svd

Sign Ambiguity in Singular Value Decomposition (SVD). This is a good article for those
who want a deeper understanding of sign ambiguity. https://www.educative.io/blog/
sign-ambiguity-in-singular-value-decomposition

Singular Value Decomposition Tutorial. This PDF starts by defining points, space, and vectors
and works through all the concepts you need to tackle SVD. It is one of the few resources
that has a completely worked out example of manually calculating SVD. The example in
this chapter is from that tutorial. If you read the entire paper, you will find that it is a good
review of the concepts you have studied in previous chapters. https://rb.gy/j6s0w

https://www.ams.org/publicoutreach/feature-column/fcarc-svd
https://www.educative.io/blog/sign-ambiguity-in-singular-value-decomposition
https://www.educative.io/blog/sign-ambiguity-in-singular-value-decomposition
https://rb.gy/j6s0w

Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 6)

Compute dot product of a and b:

1 ∗−4+ 3 ∗ 6 = −4+ 18 = 14

Compute the dot product of b and b

16+ 36 = 52

14/52 ∗ (−4, 6) = (−1.076, 1.61)

Answer to Exercise 2 (on page 10)

The first vector of the orthogonal subspace is:

v1 = x1 = (1, 1, 1)

The second vector of the subspace is a projection of x2 onto v1.

v2 = x2 −
x2v1
v1v1

v1

Substitute the values:

v2 = (0, 1, 1) −
(0, 1, 1)(1, 1, 1)

(1, 1, 1)(1, 1,−1)
(1, 1, 1)

v2 = (0, 1, 1) − (2/3)(1, 1, 1)

v2 = (−2/3, 1/3, 1/3)

Normalize:
v1 = v1/

√
|v1|

v1 = (1, 1, 1)/
√

|v1|

v1 = (0.577, 0.577, 0.577)

v2 = v2/
√

|v2|

27

28 Chapter A. ANSWERS TO EXERCISES

v2 = (0, 1, 1)
√

|v2|

v2 = (−0.816, 0.408, 0.408)

Answer to Exercise 3 (on page 24)

U =

[
−0.70710678 −0.70710678

−0.70710678 0.70710678

]
Singularvalues = [3.464101623.16227766]

VT =

−0.408 −0.816 −0.408

−0.894 0.447 0.0

−0.183 −0.365 0.9129



Index

eigenvalue, 13
eigenvector, 13

Gram-Schmidt process, 7

projection, 3

singular value decomposition, 19
svd, 19

29

	Projections
	Projections in Python
	Where to Learn More

	The Gram-Schmidt Process
	The Process
	Example Calculation
	The Gram-Schmidt Process in Python
	Where to Learn More

	Eigenvectors and Eigenvalues
	Definition
	Finding Eigenvalues and Eigenvectors
	Example
	Eigenvalues and Eigenvectors in Python
	Where to Learn More

	Singular Value Decomposition
	Definition
	Applications of SVD
	Calculating SVD Manually
	Singular Value Decomposition with Python
	Sign Ambiguity
	SVD Applied to Image Compression
	Where to Learn More

	Answers to Exercises
	Index

