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Chapter 1

Vector Independence

Think back to a time when you played with blocks. If you had two blocks, you couldn’t
make many shapes out of them. With three, you had a few more options. With a dozen,
you were able to make many more shapes. In the world of blocks, a span would be all
the things you could make with a given set of blocks.

A vector span is similar, but in a mathematical sense. If I give you the coordinates for a
vector and ask you to make everything you can from that vector using only the original
vector, the result is the span. You can scale the vector, add it to itself — anything that is a
linear combination of only that vector. As with the blocks, you’ll find what you can make
from one vector is limited. The span will be a line. However, when you are given two or
more vectors to ”play” with, you will be able to create much more. The span will be larger
than in the case of having only one vector. The size of the span (sometimes referred to as
a subspace) will depend on whether the vectors are linearly independent or dependent.
In this chapter, we will examine what independence and dependence mean for vectors. In
the next chapter, we will apply what we’ve learned about independence and dependence
to determine the span of a set of vectors.

1.1 Overview: Independence and Dependence

You saw some linearly dependent vectors in the previous chapter. Now, we will expand
this concept. A set of linearly independent vectors means that no vector is a combination
of any other vector. Let’s look at these three:

[100]

[010]

[001]

If you scale each vector as much as possible, the span encompasses the entire 3D real
space.

A set of linearly dependent vectors means one or more of the vectors can be written as a
combination of one of the vectors.

For example:
v1 = [7− 22]
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4 Chapter 1. VECTOR INDEPENDENCE

v2 = [14− 44]

You can see that v2 is 2 ∗ v1. They are linearly dependent. This is a simple example, but
when you encounter larger matrices, it won’t be as obvious. You will learn computational
techniques for figuring out independence.

Vector spans have practical applications in a number of fields. Computer graphics and
physics are two of them. For example, in space travel, knowing the vector span is essential
to calculating a slingshot maneuver that will give spacecraft a gravity boost from a planet.
For this, you’d need to know the gravity vector of the planet relative to the sun and the
velocity vectors that characterize the spacecraft. Engineers would use this information
to figure out the trajectory angle that would allow the spacecraft to achieve a particular
velocity in the desired direction. The span constrains the set of successful solutions.

1.2 Vector Independence

A set of vectors S = {v1,v2, . . . , vn} is linearly independent if the only solution to the
equation:

a1v1 + a2v2 + · · ·+ anvn = 0

is
a1 = a2 = ... = an = 0

This means that no vector in the set can be written as a linear combination of the other
vectors.

If there exists a nontrivial solution (i.e., a solution where some ai 6= 0), then the vectors
are said to be linearly dependent. This means that at least one vector in the set can be
written as a linear combination of the other vectors.

The concept of vector independence is fundamental to the study of vector spaces, bases,
and rank. You will learn more about these concepts in future modules.

1.2.1 Dependent Vectors

Let’s start by looking at two vectors.

v1 =
[
2

4

]
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v2 =
[
−14

−28

]

These two vectors are dependent, because v2 = −7 ∗ v2. This is an obvious example, but
let’s show it mathematically. If linearly independent, the two vectors must satisfy:

a1v1 + a2v2 = 0

which is:
2a1 − 14a2 = 0

4a1 − 28a2 = 0

To solve, multiply the top equation by -2 and add it to the bottom:

2a1 − 14a2 = 0

0+ 0 = 0

The bottom equation drops out. Now, solve for a1 in the remaining equation:

a1 = −7a2

As you can see, one vector is a multiple of another.

a1 6= a2 6= 0

1.2.2 Independent Vectors

Let’s see if these two vectors are independent.

v1 =
[
1

0

]

v2 =
[
0

−1

]

To be independent, the two vectors must satisfy:

a1v1 + a2v2 = 0
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which is: [
a1 + 0 ∗ a2 = 0

0 ∗ a1 +−a2 = 0

]

So:
a1 = a2 = 0

These vectors are not only independent, but they are orthogonal (perpendicular) to one
another. You’ll learn more about orthogonality later.

Here is an example whose solution isn’t as obvious. You can solve using Gaussian elmi-
nation.

v1 = [2 1]

v2 = [1 − 6]

Rewrite as a system of equations:

a1 ∗ 2+ a2 ∗ 1 = 0

a1 ∗ 1+ a2 ∗ (−6) = 0

First, swap the equations so that the the top equation has a coefficient of 1 for a1:

a1 − 6a2 = 0

2a1 + a2 = 0

Next, multiply row 1 by -2 and add it to row 2:

a1 − 6a2 = 0

0− 11a2 = 0

Multiply row 2 by 1 divided by 11.

a1 − 6a2 = 0

0+ a2 = 0

Back substitute a2 solution into the first equation:

a1 = 0

a2 = 0

Therefore, a1 = a2 = 0 and the two vectors are linearly independent.
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Exercise 1 Vector Independence

.Are these vectors independent?

[2 1 4]

[2 −1 2]

[0 1 −2]

Show your work.

Answer on Page 29

Working Space

1.3 Checking for Linear Independence Using Python

One way to use Python to check for linear independence is to use the linalg.solve() func-
tion to solve the system of equations. You need to create an array that contains the co-
efficients of the variable and a vector that contains the values on the right-side of each
equation. So far, you have either been given equations that equal 0 or you have manipu-
lated each equation to be equal to 0.

Let’s first see how to use Python to solve the equations in the previous exercise. If the
equations are linearly independent, then a1 = a2 = a3 = 0.

Create a file called span_independence.Python and enter this code:

import numpy as np

A = np.array([[2, 2, 0],
[1, -1, 1],
[4, 2, -2]])

b = np.array([0, 0, 0])
c = np.linalg.solve(A,b)
print(c)

You should get this result, which shows the equations are linearly independent.

[0., -0., 0.]
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However, what happens if the equations are not independent? Let’s make the first two
equations dependent by making equation 1 two times equation 2. Enter this code into
your file:

import numpy as np

D = np.array([[2, -2, 2],
[1, -1, 1],
[4, 2, -2]])

e = np.array([0, 0, 0])
f = np.linalg.solve(D,f)
print(f)

You should get many lines indicating an error. Among the spew, you should see:

raise LinAlgError("Singular matrix")

So, while the linalg.solve() function is quite useful for solving a system of independent
linear equations, raising an error is not the most elegant way to figure out if the equations
are dependent. That is where the concept of a determinant comes in. You will learn about
that in the next section, but for now, let’s use the linalg.solve() function to find a solution
for a set of equations known to be linearly independent.

4x1 + 3x2 − 5x3 = 2

−2x1 − 4x2 − 5x3 = 5

8x2 + 8x3 = −3

You will create a matrix that contains all the coefficients and a vector that contains the
values on the right-side of the equations.

Enter this code into your file.

G = np.array([[4, 3, -5],
[-2, -4, 5],
[8, 8, 0]])

h = np.array([2, 5, -3])

j = np.linalg.solve(G, h)
print(j)

You should get this answer:

[2.20833333, -2.58333333, -0.18333333]



Chapter 2

Span

2.1 Spans of Vectors

Knowing whether two vectors are linearly dependent or independent allows us to ac-
curately describe the span of those two vectors (this expands to include any number of
vectors). In the previous chapter, we saw that linear combinations of two linearly depen-
dent vectors can only make vectors that lie on the same line as the two starting vectors.
We saw this in 2D, but it also applies to 3D vectors. Consider the two vectors u = [2, 4, 3]
and v = [4, 8, 6], shown in figure 2.1.

x
y

z

u

v

Figure 2.1: 3-dimensional vectors, u and v

Notice that these two vectors are colinear (that is, they are on the same line), therefore
they are linearly dependent and any combination of u and v will lie on the same line as u
and v. Therefore, we say the the span of u and v is a line. In fact, for any size list of linearly
dependent vectors (whether it’s one vector or one hundred), the span of that list is a line.

Now that you have a sense of what a span is, it is time for the formal mathematical
definition. A vector span is the collection of vectors obtained by scaling and combining
the original set of vectors in all possible proportions. Formally, if the set S = {v1,v2, . . . , vn}
contains vectors from a vector space V , then the span of S is given by:

Span(S) = {a1v1 + a2v2 + · · ·+ anvn : a1, a2, ..., an ∈ R} (2.1)

This means that any vector in the Span(S) can be written as a linear combination of the
vectors in S.

9



10 Chapter 2. SPAN

2.1.1 Spans of Independent Vectors

What if our list of vectors aren’t all linearly dependent on each other? We’ve seen in
2 dimensions that any two independent vectors can be linearly combined to create any
vector in R2. So, the span is described as a plane (in fact, it is the entire xy-plane, which
we also call R2). How does this expand to 3-dimensional vectors?

Let’s again consider two 3-dimensional vectors: u = [2, 4, 3] and v = [2, 1, 0], as shown in
figure 2.2.

u

vx

y

z

Figure 2.2: Linearly independent 3-dimensional vectors, u and v

Just like in two dimensions, any two independent vectors in R3 define a plane (see figure
2.3). This also applies to higher dimensions: the span of any two linearly independent
vectors is a plane.

u

vx

y

z

Figure 2.3: Linearly independent 3-dimensional vectors, u and v, define a plane.

If we have 3 independent vectors, then we can define a 3-dimensional space. To understand
this, first imagine a plane formed by two independent 3-dimensional vectors like in figure
2.3). If a third independent vector is introduced, it must not lie on the plane: if it did,
it would be a linear combination of the first two and therefore not independent. This
third vector allows us to move off the plane, and therefore all three independent vectors
span R3. In review, 1 vector or set of dependent vectors span a line, 2 vectors or sets of
dependent vectors span a plane, and 3 vectors or sets of dependent vectors span R3.

Example: Do the vectors r = [5, 4,−6], s = [0,−5,−10], and t = [0, 2, 4, ] span a line, plane,
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or R3?

Solution: We need to determine the number of independent vectors. First, we’ll check if r
and s are independent. They are independent if the only solution to the equation below
is a1 = a2 = 0:

a1 [5, 4,−6] + a2 [0,−5,−10] = [0, 0, 0]

Which we can write as a system of equations:

5a1 + 0a2 = 0

4a1 − 5a2 = 0

−6a2 − 10a2 = 0

From the first equation, we see that 5a1 = 0 which implies that a1 = 0. Substituting that
into the second equation:

4(0) − 5a2 = 0

−5a2 = 0

a2 = 0

Therefore, vectors r and s are independent. Now let’s check r and t:

a1 [5, 4,−6] + a2 [0, 2, 4, ] = [0, 0, 0]

Which we can re-write as a system of equations:

5a1 + 0a2 = 0

4a1 + 2a2 = 0

−6a1 + 4a2 = 0

Again, from the first equation, we see that a1 = 0. Substituting into the second:

4(0) + 2a2 = 0

2a2 = 0

a2 = 0

Therefore, r and t are also independent. Last, we’ll check s and t for independence:

a1 [0,−5,−10] + a2 [0, 1, 2, ] = [0, 0, 0]
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The system of equations:
0a1 + 0a2 = 0

−5a1 + a2 = 0

−10a1 + 2a2 = 0

The first equation doesn’t tell us anything, since it would be true no matter what a1 and
a2 are. We can solve the second equation for a2 and substitute into the third equation:

a2 = 5a1

−10a1 + 2 (5a1) = 0

−10a1 + 10a1 = 0

Which is also true for all a1. In fact, there aremany solutions to a1 [0,−5,−10]+a2 [0, 1, 2, ] =
[0, 0, 0], a1 = 1 and a2 = 5 is an example. Therefore, s and t are dependent. So, we really
have 2 independent vectors in the list, and therefore span(r, s, t) is a plane.

Exercise 2 Determining Span

.Geometrically describe (line, plane, or
R3) the span of the list of vectors.

1. [1, 2, 4] and [−2,−4,−8]

2. [2, 0, 0] and [0, 1, 3]

3. [3, 0, 0] and [0, 3, 3] and [3, 3, 2]

Answer on Page 30

Working Space

2.2 Determinants

Checking all these vectors by hand takes a long time. What if you had a list of 5, 10, or
even 100 vectors? The determinant of a matrix is a scalar value that indicates whether the
columns of a matrix are linearly independent. So, if you put all your vectors together in
a matrix and take the determinant of that matrix, the result will tell you if all the vectors
are independent or not. For a 2D matrix, the determinant is the area of the parallelogram
defined by the column vectors. For a 3D matrix, the determinant is the volume of the
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parallelepiped (a six-dimensional figure formed by six parallelograms, such as a cube).

Let’s plot the parallelogram for this matrix (see figure 2.4):[
2 0

0 2

]

0.5 1 1.5 2 2.5 3

1

2

3

[
2

0

]

[
0

2

]

x

y

Figure 2.4: A parallelogram constructed from vectors [2, 0] and [0, 2]

The formal definition for calculating the determinant of a 2 by 2 matrix is:

det(A) = (a ∗ d) − (b ∗ c)

where
A =

[
a b

c d

]

For the matrix plotted above, the determinant is (2 ∗ 2) − (0 ∗ 0). You can also see that 4.0
is the area, base (2) times height (2).

You can use the determinant to see what happens to a shape when it goes through a linear
transformation. Let’s scale the 2 by 2 matrix by 4:[

8 0

0 8

]
Plot it (see figure 2.5):

Find the determinant.

(8 ∗ 8) − (0 ∗ 0) = 64
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2 4 6 8

2

4

6

8

[
8
0

]

[
0
8

]

x

y

Figure 2.5: Scaling the matrix also scales the parallelogram.

You can see that scaling the matrix scaled the area by the scaling factor squared (see figure
2.6).

2 4 6 8

2

4

6

8

[
8
0

]

[
0
8

]

[
2
0

]
[
0
2

]

x

y

Figure 2.6: Scaling a matrix by a constant c increases the area of the parallelogram by a
factor of c2.

We can show why this is true mathematically. Suppose we have a 2 by 2 matrix A:

A =

[
w x

y z

]

Then det(A) = wz− xy. We can scale this matrix by a constant, c:

cA = c ·
[
w x

y z

]
=

[
cw cx

cy cz

]
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And we can take the determinant:

det(cA) = det

([
cw cx

cy cz

])
= cw(cz) − cx(cy) = c2(wz− xy) = c2 · det(A)

Therefore, scaling a 2 by 2 matrix by a factor changes the determinant by that factor
squared. What about higher dimensions? If each side of a cube were scaled by a factor
of c, then the volume of the cube would change by a factor of c3 (feel free to confirm this
yourself). And if a tesseract (a four-dimensional cube) had each side scaled by a factor
of c, then the hypervolume (four-dimensional volume) would be scaled by a factor of c4.
Do you notice a pattern?

In fact, scaling an n × n matrix by a constant factor, c, changes the determinant of that
n× n matrix by a factor of cn.

What happens if the columns of a matrix are not independent? Let’s plot this matrix (see
figure 2.7): [

2 1

4 2

]

1 2 3 4

1

2

3

4

5

[
2
4

]

[
1
2

]

x

y

Figure 2.7: The vectors
[
1

2

]
and

[
2

4

]
are co-linear, so there is no area between them and

the determinant of
[
2 1

4 2

]
is zero.

One vector overwrites the other. As you can see, the area is 0 because there is no space
between the vectors. Therefore, the columns of the matrix are linearly dependent.
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Exercise 3 Finding the Determinate

.Plot the parallelogram represented by the
columns of the matrix. What is the area
of this parallelogram?

1.
[
1 4

−3 1

]

2.
[
5 −5

5 −1

]

3.
[
0 −5

−2 0

]

Answer on Page 30

Working Space

Calculating the determinant for a 2 by 2 matrix is easy. For a larger matrix, finding the
determinant is more complex and requires breaking down the matrix into smaller matrices
until you reach the 2x2 form. The process is called expansion byminors. For our purposes,
we simply want to first check to see if a matrix contains linearly independent rows and
columns before using our Python code to solve.

Modify your code so that is uses the np.linalg.det() function. If the determinant is not
zero, then you can call the np.linalg.solve() function. Your code should look like this:

if (np.linalg.det(D) != 0):
j = np.linalg.solve(D,e)
print(j)

else:
print("Rows and columns are not independent.")

2.3 Where to Learn More

Watch this video on Linear Combinations and Vector Spans from Khan Academy: http://rb.
gy/g1snk

The Wolfram Demonstrations website has a fun, interactive demo where you can en-
ter values for 2D and 3D matrices and see how the area or volume changes. https:
//demonstrations.wolfram.com/DeterminantsSeenGeometrically/#more

http://rb.gy/g1snk
http://rb.gy/g1snk
https://demonstrations.wolfram.com/DeterminantsSeenGeometrically/#more
https://demonstrations.wolfram.com/DeterminantsSeenGeometrically/#more
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If you are curious about the Expansion of Minors, see: https://mathworld.wolfram.com/
DeterminantExpansionbyMinors.html

https://mathworld.wolfram.com/DeterminantExpansionbyMinors.html
https://mathworld.wolfram.com/DeterminantExpansionbyMinors.html




Chapter 3

Matrices and Systems of Linear
Equations

In the chapter on linear combinations, we saw that we can linearly combine vectors to
create other vectors. Consider 3 vectors:

x =

−1

2

0

 y =

−1

2

1

 z =

−2

1

0


We can write a linear combination of these vectors:

cx+ dy+ ez

Which we can expand to show the vectors:

c

−1

2

0

+ d

−1

2

1

+ e

−2

1

0

 =

−c− d− 2e

2c+ 2d+ e

d



We can also represent this combination with a matrix where each column is one of the
vectors: −1 −1 −2

2 2 1

0 1 0

 ·

cd
e

 =

−c− d− 2e

2c+ 2d+ e

d



3.1 Trail Mix for Mars

Let’s look at an applied problem. Three astronauts, Pat, Kai, and River, are getting ready
for a trip to Mars. NASA food service is preparing trail mix for the voyage, tailored to
each astronaut’s taste. The chef needs to submit a budget based on the cost of the trail
mix for each astronaut. The mix is made up of raisins, almonds, and chocolate.

Pat prefers a raisins:almonds:chocolate ratio of 6:10:4, Kai likes 2:3:15, and River wants
14:1:5. The chef can buy a kg of raisins for $7.50, a kg of almonds for $14.75, and a kg of

19
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chocolate for $22.25. Assuming each astronaut will get 20 kg of trail mix, which astronaut
will cost more to feed?

First, set up a matrix to represent the raisins:almonds:chocolate ratios. (Conveniently,
these ratios already add to 20.)

MixRatios =

 6 10 4

2 3 15

14 1 5


Use a vector to represent the cost of each item:

IngredientCost =

 7.50

14.75

22.25



To find the cost of trail mix for each astronaut, we simply find the dot product between
the mix ratios and the ingredient costs to get:

Pat = $281.50
Kai = $615.50
River = $231.00

Exercise 4 Vector Matrix Multiplication

.Multiply the array A with the vector v.
Compute this by hand, and make sure
to show your computations.

A =

 1 −2 3 5

−4 2 7 1

3 3 −9 1



v =


2

2

6

−1



Answer on Page 32

Working Space
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Exercise 5 Using Vector Matrix Multiplication

.A college professor offers three different
methods of determining a student’s fi-
nal grade. In method A, the student’s
grade is 20% based on attendance, 50%
homework, 15%midterm, and 15% final.
This professor knows many students can
learn the material without attending ev-
ery class, so with method B the student’s
grade is 50% homework, 20% midterm,
and 30% final. Last, the professor knows
some students don’t do the homework
but still show they understand the ma-
terial by doing well on the tests. With
method C, a student’s grade is 40%midterm
and 60% final. The professor uses what-
ever method results in the highest grade
to determine each student’s final grade.

Suppose Suzy has attended 65% of classes,
has an average homework grade of 30%,
earned a 80% on themidterm, and earned
a 75% on the final. What final grade will
her professor post?

Answer on Page 32

Working Space

3.1.1 Vector-Matrix Multiplication in Python

Most real-world problems use very large matrices, where it becomes impractical to do
calculations by hand. As long as you understand how matrix-vector multiplication is
performed, you will be equipped to use a computing language, like Python, to do the
calculations for you.

Create a file called vectors_matrices.py and enter this code:

# import the python module that supports matrices
import numpy as np
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# create an array
a = np.array([[5, 1, 3, -2],

[1, -1, 8, 4],
[6, 2, 1, 3]])

# create a vector
b = np.array([1, 2, 3, -8])

# calculate the dot product
print(a.dot(b))

When you run it, you should see:

[16, 6, 8]

3.2 Where to Learn More

Watch this video from Khan Academy about matrix-vector products: https://rb.gy/
frga5

https://rb.gy/frga5
https://rb.gy/frga5


Chapter 4

Matrices

You have already gained experience with matrices earlier in this module, as well as when
you have used spreadsheets. In this chapter, you will learn the types of matrices and get
an introduction to some of the special matrices used for various calculations.

As you know, a matrix is a rectangular array of numbers arranged in rows and columns.
The individual numbers in the matrix are called elements or entries. Matrices can be
described by their dimensions. For example, a matrix with 2 rows and 3 columns is a 2
by 3 matrix.

[
1 2 3

4 5 6

]

More generally, a matrix with m rows and n columns is referred to as an m × n matrix,
or simply an m-by-n matrix; m and n are its dimensions.

The general form of a 2× 3 matrix A is:

A =

[
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

]

4.1 Types of Matrices

Matrices can be described by their shape:

• Row Matrix: Has only one row.

• Column Matrix: Has only one column.

• Square Matrix: Has the same number of rows and columns.

• Rectangular Matrix: Has an unequal number of rows and columns.

They can also be described by their unique numerical properties. Special matrices that
come in handy for certains types of computations. These are a few of the most common
special matrices:

• Zero Matrix: Only contains entries that are zero.

23



24 Chapter 4. MATRICES

• Identity Matrix: Sometimes called the unit matrix, it is a square matrix whose di-
agonal entries are 1 and all other entries are 0.

• Symmetric Matrix: A square matrix that equals its transpose. The next section
shows how to create the transpose of a matrix,

• Diagonal Matrix: Has nonzero elements on the main diagonal, but all other ele-
ments are zero

• Triangular Matrix: This is a special square matrix that can be upper triangular or
lower triangular. If upper, the main diagonal and all entries above it are nonzero
while the lower entries are all zero. If lower, the main diagonal and all the entries
below it are nonzero, while the upper entries are all zero.

4.1.1 Symmetric Matrices

If you want to find out if a square matrix is symmetric, you need to transpose it. If the
transpose is equal to the original matrix, then the matrix is symmetric.

To transpose a matrix, flip it over its diagonal so that the rows and columns are switched,
like this:

A =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3


After transposing:

AT =

a1,1 a2,1 a3,1

a1,2 a2,2 a3,2

a1,3 a2,3 a3,3


Note that AT means the transpose of A.

Let’s see how this works for the following square matrix, A.

A =

1 2 3

2 4 5

3 5 6


Switch the rows and columns to get the transpose:

AT =

1 2 3

2 4 5

3 5 6


Notice that A = AT , so the matrix is symmetric.
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What about matrix B?

B =

1 2 3

2 4 5

7 8 9


Switch the rows and columns to get the transpose:

B =

1 2 7

2 4 8

3 5 9



Note that B 6= BT , so B is not symmetrical.

Exercise 6 Matrix Transposition

.Find the transpose of this matrix. Is it
symmetric?

A =

 3 −2 4

−2 6 2

4 2 3



Answer on Page 33

Working Space

4.1.2 Creating Matrices in Python

Create a file called matrices_creation.py and enter this code:

# import the python module that supports matrices
import numpy as np
# Use the function np.array to define a matrix that
# contains specific values that you supply.
A = np.array([[ 5, 1, 3],

[ 1, -1, 8],
[ 6, 2, 1]])

# The transpose function returns
A.transpose()

When you run it, you should see:
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array([[ 5, 1, 6],
[ 1, -1, 2],
[ 3, 8, 1]])

As you can see, A 6= AT , so A is not symmetric. Try another:

# create a matrix, B
B = np.array([[ 5, 1, 6],

[ 1, -1, 2],
[ 6, 2, 1]])

B.transpose()

When you run it, you should see:

array([[ 5, 1, 6],
[ 1, -1, 2],
[ 6, 2, 1]])

B is symmetric. You can actually transpose any matrix using this function, but a matrix
cannot be symmetric unless it is square.

Try this code to see what happens when you transpose a rectangular matrix.

# create a matrix, J
J = np.array([[ 5, 1, 3, 0],

[ 1, -1, 8, 11],
[ 6, 2, 1,-7]])

J.transpose()

Note that transposing a rectangular matrix changes its dimension from 3 by 4 to 4 by 3.
You should see a transposed matrix, but it’s not symmetric.

array([[ 5, 1, 6],
[ 1, -1, 2],
[ 3, 8, 1],
[ 0, 11, -7]])

4.1.3 Creating Special Matrices in Python

Use the same file to add this code for creating a zero matrix.
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# create an 8 by 10 Zero matrix.
C = np.zeros((8, 10))
C

When you run it, you should see:

array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

Add the following code to create an 8 by 8 Identity matrix.

# create an 8 by 8 Identity matrix
D = np.eye(8)
D

When you run it, you should see:

array([[1., 0., 0., 0., 0., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0., 0., 0., 1.]])

As you progress in your studies, you will learn the importance of diagonal matrices and
of extracting the diagonal of a matrix. Let’s see how to extract a diagonal, then create a
diagonal matrix.

# create a matrix
W = np.array([[1, 2, 3, 4],

[5, 6, 7, 8],
[-8, -7, -6, -5],
[-4, -3, -2, -1]])

Extract the main diagonal using np.diag(<array>,<diagonal to extract>). Passing 0 as
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the second parameter specifies the main diagonal. A positive value extracts a diagonal
from the upper part. A negative value extracts a diagonal from the lower part. Run this
code then experiment passing other values to see what you get.

print(np.diag(W,0))

When you run it, you should see:

array([ 1, 6, -6, -1])

You can also use np.diag() to create a diagonal matrix from a 1D array. In this case, do
not pass a second paramenter.

Q = np.array([1, 2, 3])
DiagArray = np.diag(Q))
print(DiagArray)

When you run it you should see;

[[1 0 0]
[0 2 0]
[0 0 3]]

Python has functions for extracting upper and lower triangular matrices. Try these:

print(np.triu(W))
print(np.tril(W))

You should see:

[[ 1 2 3 4]
[ 0 6 7 8]
[ 0 0 -6 -5]
[ 0 0 0 -1]]

[[ 1 0 0 0]
[ 5 6 0 0]
[-8 -7 -6 0]
[-4 -3 -2 -1]]



Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 7)

Rewrite as a system of equations:

2 ∗ a1 + 2 ∗ a2 + 0 ∗ a3 = 0

1 ∗ a1 − 1 ∗ a2 + 1 ∗ a3 = 0

4 ∗ a1 + 2 ∗ a2 − 2 ∗ a3 = 0

Simplify
2a1 + 2 ∗ a2 = 0

a1 − a2 + a3 = 0

4a1 + 2a2 − 2a3 = 0

Swap row 2 and 1:
a1 − a2 + a3 = 0

2a1 + 2 ∗ a2 = 0

4a1 + 2a2 − 2a3 = 0

Multiply row 1 by -2 and add to row 2:

a1 − a2 + a3 = 0

0+ 3 ∗ a2 − 2a3 = 0

4a1 + 2a2 − 2a3 = 0

Multiply row 1 by -4 and add to row 3:

a1 − a2 + a3 = 0

0+ 3 ∗ a2 − 2a3 = 0

0+ 6a2 − 6a3 = 0

Multiply row 2 by -4 and add to row 3:

a1 − a2 + a3 = 0

0+ 3 ∗ a2 − 2a3 = 0

0+ 0− 2a3 = 0

Multiply row 3 by -1 and add to row 2:

a1 − a2 + a3 = 0

0+ 3 ∗ a2 + 0 = 0

0+ 0− 2a3 = 0

29
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Divide row 3 by -2 and row 2 by 1
3 :

a1 − a2 + a3 = 0

0+ a2 + 0 = 0

0+ 0+ a3 = 0

Backsubstitute a2 and a3 into row 1:

a1 + 0+ 0 = 0

0+ a2 + 0 = 0

0+ 0+ a3 = 0

Therefore
a1 = a2 = a3 = 0

.

Answer to Exercise 2 (on page 12)

1. Since the second vector is a scalar multiple of the first, the span of S = {[1, 2, 4] , [−2,−4,−8]}
is a line.

2. Since the second vector is not a scalar multiple of the first, the span of S = {[2, 0, 0, ] , [0, 1, 3]}
is a plane.

3. None of the three vectors are scalar multiples or linear combinations of the other
two. Therefore, the span of S = {[3, 0, 0] , [0, 3, 3] , [3, 3, 2]} is R3.

Answer to Exercise 3 (on page 16)

1. Our two vectors from the columns of the matrix are [1,−3] and [4, 1]. Plotting:
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−1 1 2 3 4 5

−4

−2

2

x

y

The area of this parallelogram is the same as the determinant of the matrix:

det

([
1 4

−3 1

])
= 1 · 1− (4 ·−3) = 1+ 12 = 13

2. Our two vectors from the columns of the matrix are [5, 5] and [−5,−1]. Plotting:

−6 −4 −2 2 4 6

−2

2

4

6

x

y

The area of this parallelogram is the same as the determinant of the matrix:

det

([
5 −5

5 −1

])
= 5 ·−1− (−5 · 5) = −5+ 25 = 20

3. Our two vectors from the columns of the matrix are [0,−2] and [−5, 0]. Plotting:
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−6 −5 −4 −3 −2 −1 1

−2

−1

1

x

y

This is a rectangle, and we can see the area is 5 · 2 = 10. However, the determinant
is:

det

([
0 −5

−2 0

])
= 0 · 0− (−5 ·−2) = 0− 10 = −10

We will discuss this unusual response in a future chapter.

Answer to Exercise 4 (on page 20)

Av = (11 37 − 43)

Answer to Exercise 5 (on page 21)

The different methods can be represented in a matrix:0.20 0.50 0.15 0.15

0 0.50 0.20 0.30

0 0 0.4 0.6



And Suzy’s individual grades can be represented by a vector:
65

30

80

75


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To see the results of the three different methods, we can multiply the matrix and the
vector:0.20 0.50 0.15 0.15

0 0.50 0.20 0.30

0 0 0.4 0.6

 ·


65

30

80

75

 =

0.2(65) + 0.5(30) + 0.15(80) + 0.15(75)
0(65) + 0.5(30) + 0.2(80) + 0.3(75)
0(65) + 0(30) + 0.4(80) + 0.6(75)



Which yields: 51.2553.5

77


Since method C yields the highest grade, the professor will post a final grade of 77.

Answer to Exercise 6 (on page 25)

A = At =

 3 −2 4

−2 6 2

4 2 3


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