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Chapter 1

Optimization

Optimization is a branch of mathematics that involves finding the best solution from all
feasible solutions. In the field of operations research, optimization plays a crucial role.
Whether it is minimizing costs, maximizing profits, or reducing the time taken to perform
a task, optimization techniques are employed to make decisions effectively and efficiently.

1.1 Optimization Problems

An optimization problem consists of maximizing or minimizing a real function by sys-
tematically choosing the values of real or integer variables from within an allowed set.
This function is known as the objective function.

A standard form of an optimization problem is:

minimize
x

f(x) subject to gi(x) ≤ 0, ; i = 1, . . . ,m hj(x) = 0, ; j = 1, . . . , p

where

• f(x) is the objective function,

• gi(x) ≤ 0 are the inequality constraints,

• hj(x) = 0 are the equality constraints.

1.2 Types of Optimization Problems

There are several different types of optimization problems, such as:

• Linear Programming: The objective function and the constraints are all linear.

• Integer Programming: The solution space is restricted to integer values.

• Nonlinear Programming: The objective function and/or the constraints are nonlin-
ear.

• Stochastic Programming: The objective function and/or constraints involve random
variables.
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4 Chapter 1. OPTIMIZATION

These problems are solved using different techniques and algorithms, many of which are
a subject of active research.

1.3 Applications

Optimization techniques have a wide variety of applications in many fields, such as eco-
nomics, engineering, transportation, and scheduling problems.

FIXME expand this chapter with examples of calculus optimization using min max from
previous chapter



Chapter 2

Implicit Differentiation

Implicit differentiation is a technique in calculus for finding the derivative of a relation
defined implicitly (that is, a relation between variables x and y that is not explicitly solved
for one variable in terms of the other).

2.1 Implicit Differentiation Procedure

Consider an equation that defines a relationship between x and y:

F(x, y) = 0

To find the derivative of y with respect to x, we differentiate both sides of this equation
with respect to x, treating y as an implicit function of x:1

d

dx
F(x, y) =

d

dx
0

Applying the chain rule during the differentiation on the left side of the equation gives:

∂F

∂x
+

∂F

∂y

dy

dx
= 0

Finally, we solve for dy
dx to find the derivative of y with respect to x:

dy

dx
= −

∂F
∂x
∂F
∂y

This result is obtained using the implicit differentiation method.

1This d
dx

form of the derivative is the same as y ′ said as taking the derivative of y with respect to x
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6 Chapter 2. IMPLICIT DIFFERENTIATION

2.2 Example

Consider the equation of a circle with radius r:

x2 + y2 = r2

First, we will find dy
dx without implicit differentiation. Newxt, we will apply implicit dif-

ferentiation to get the same result.

2.2.1 Without Implicit Differentiation

First, we need to rearrange the equation to solve for y:

y2 = r2 − x2

y = ±
√
r2 − x2

We take the derivative of y by applying the Chain Rule:

dy

dx
=

1

2±
√
r2 − x2

· (−2x) =
−x

±
√
r2 − x2

Notice the denominator of this fraction is the same as the solution we found for y, y =
±
√
r2 − x2. So, we can also represent this as:

dy

dx
=

−x

y

2.2.2 With Implicit Differentiation

With implicit differentiation, we assume y is a function of x and apply the Chain Rule.

d

dx
[x2 + y2] =

d

dx
[r2]
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For x2 and r2, we take the derivative as we normally would.2 For y2, we apply the Chain
Rule, as outlined above.3

2x+ 2y
dy

dx
= 0

Solving for dy
dx , we find

dy

dx
=

−x

y

, which is the same result as we found without implicit differentiation.

2.3 Folium of Descartes

It was relatively easy to rearrange the equation for a circle to solve for y, but that is not
always the case. Consider the equation for the folium of Descartes (yes, that Descartes!):

x3 + y3 = 3xy

It is much more difficult to isolate y in this equation. In fact, were we to do so, we would
need three separate equations to completely describe the original equation.

2.3.1 Example: Tangent to Folium of Descartes

In this example, we will use implicit differentiation to easily find the tangent line at a
point on the folium.

(a) Find dy
dx if x3 + y3 = 6xy

(b) Find the tangent to the folium x3 + y3 = 3xy at the point (2, 2)

(c) Is there any place in the first quadrant where the tangent line is horizontal? If so, state
the point(s).

Solution:

(a) d
dx [x

3 + y3] = d
dx [3xy]

3x2 + 3y2dy

dx
= 3x

dy

dx
+ 3y

x2 + y2dy

dx
= x

dy

dx
+ y

2The d
dx

part disappears when taking the derivative of x, as the derivative of x with respect to x is just
regular differentiation.

3Applying the chain rule is only allowed as y is not the variable we were taking the derivative with respect
to.
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Rearranging to solve for dy
dx :

dy

dx
(y2 − x) = y− x2

dy

dx
=

y− x2

y2 − x

(b) We already have the coordinate point, (2, 2), so to write an equation for the tangent
line, all we need is the slope. Substituting x = 2 and y = 2 into our result from part (a):

dy

dx
=

2− 22

22 − 2
=

−2

2
= −1

This is the slope,m. Using the point-slope form of a line, our tangent line is y−2 = −(x−2).

(c) Recall that in the first quadrant, x > 0 and y > 0. We will set our solution for dy
dx equal

to 0:
y− x2

y+ 2− x
= 0

which implies that
y− x2 = 0

Substituting y = x2 into the original equation:

x3 + (x2)3 = 3(x)(x2)

x3 + x6 = 3x3

Which simplifies to
x6 = 2x3

Since we have excluded x = 0 by restricting our search to the first quadrant, we can divide
both sides by x3:

x3 = 2

x =
3
√
2 ≈ 1.26

Substituting x ≈ 1.26 into our equation for y:

y ≈ 1.262 = 1.59

Therefore, the folium has a horizontal tangent line at the point (1.26, 1.59).
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2.4 Practice

Exercise 1

.[This problem was originally presented
as a no-calculator, multiple-choice ques-
tion on the 2012 AP Calculus BC Exam.]
If arcsin x = lny, what is dy

dx ?

Answer on Page 17

Working Space

Exercise 2

.[This problem was originally presented
as a no-calculator, multiple-choice ques-
tion on the 2012 AP Calculus BC Exam.]
The points (−1,−1) and (1,−5) are on
the graph of a function y = f(x) that
satisfies the differential equation dy

dx =
x2+y. Use implicit differentiation to find
d2y
dx2

. Determine if each point is a local
minimum, local maximum, or inflection
point by substituting the x and y values
of the coordinates into dy

dx and d2y
dx2

.

Answer on Page 17

Working Space





Chapter 3

Related Rates

In calculus, related rates problems involve finding a rate at which a quantity changes by
relating that quantity to other quantities whose rates of change are known. The technique
used to solve these problems is known as ”related rates”, because one rate is related to
another rate.

3.1 Steps to solve related rates problems

3.1.1 Step 1: Understand the problem

First, read the problem carefully. Understand what rates are given and what rate you need
to find.

3.1.2 Step 2: Draw a diagram

For most problems, especially geometry problems, drawing a diagram can be very helpful.

3.1.3 Step 3: Write down what you know

Write down the rates that you know and the rate that you need to find.

3.1.4 Step 4: Write an equation

Write an equation that relates the quantities in the problem. This equation will be your
main tool to solve the problem. Some cases may require an implict equation to be con-
structed.

3.1.5 Step 5: Differentiate both sides of the equation

Now you can use calculus. Differentiate both sides of the equation with respect to time.
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12 Chapter 3. RELATED RATES

3.1.6 Step 6: Substitute the known rates and solve for the unknown

Now that you have an equation that relates the rates, substitute the known rates into the
equation and solve for the unknown rate.

3.1.7 Step 7: Create a concluding statement

Write a concluding statement that sums up what you have a calculated in a concise man-
ner.

3.2 Example

Here is an example of a related rates problem:

A balloon is rising at a constant rate of 5 m/s. A boy is cycling towards the balloon along a straight
path at 15 m/s. If the balloon is 100 m above the ground, find the rate at which the distance from
the boy to the balloon is changing when the boy is 40 m from the point on the ground directly
beneath the balloon.

The problem can be modeled with a right triangle where the vertical side is the height of
the balloon, the horizontal side is the distance of the boy from the point on the ground
directly beneath the balloon, and the hypotenuse is the distance from the boy to the
balloon.

Let x be the distance of the boy from the point on the ground directly beneath the balloon,
y the height of the balloon above the ground, and z the distance from the boy to the
balloon. From the Pythagorean theorem, we have

z2 = x2 + y2 (3.1)

Differentiating both sides with respect to time t gives

2z
dz

dt
= 2x

dx

dt
+ 2y

dy

dt
(3.2)

Given that dx
dt = −15 m/s (the boy is moving towards the point beneath the balloon),

dy
dt = 5 m/s (the balloon is rising), x = 40 m, y = 100 m, we can substitute these into the
equation and solve for dz

dt .

All related rates problems are different, so it is important to continually do them so that
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you encounter many different examples. For more examples and practice, work through
the problems included in your digital resources!





Chapter 4

Multivariate Functions and
Partial Derivatives

A real-valued multivariate function is a function that takes multiple real variables as input
and produces a single real output. We generally denote such a function as f : Rn → R,
where Rn is the domain and R is the co-domain, (ie. R is the domain of one variable and
R2 is the domain of a 2 variable function)

For example, consider a function f that takes two variables, x and y:

f(x, y) = x2 + y2

Here, f : R2 → R takes an ordered pair (x, y) from the 2-dimensional real coordinate
space, squares each, and adds them to produce a real number.

In a similar way, a function g : R3 → R could take three variables, x, y, and z, and might
be defined as:

g(x, y, z) = x2 + y2 + z2

FIXME graphic of this showing area splotch mapping to line segment Here, the function
squares each of the input variables, then adds them to produce a real number.

These functions are ”real-valued” because their outputs are real numbers, and ”multivari-
ate” because they take multiple variables as inputs.

The concepts of limits, continuity, differentiability, and integrability can all be extended
to multivariate functions, although they become more complex because we now have to
consider different directions in which we approach a point, not just from the left or right,
as in the univariate case. FIXME expand this?

For example, the partial derivative is the derivative of the function with respect to one
variable, holding the others constant. It is one of the basic concepts in the calculus of
multivariate functions.

For example, given the function f(x, y) = x2+y2, the partial derivatives of f are computed
as:

15



16 Chapter 4. MULTIVARIATE FUNCTIONS AND PARTIAL DERIVATIVES

∂f

∂x
(x, y) = 2x

∂f

∂y
(x, y) = 2y

FIXME expand on parametric funcs

We will expand on these partial derivatives in the next chapter.



Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 9)

Using implicit differentiation, we see that:

d

dx
arcsin x =

d

dx
lny

1√
1− x2

=
1

y

dy

dx

Multiplying both sides by y to isolate dy
dx , we find that:

dy

dx
=

y√
1− x2

Answer to Exercise 2 (on page 9)

First, we need to find dy

dx2
:

d

dx

dy

dx
=

d

dx
x2 +

d

dx
y

= 2x+
dy

dx
= 2x+ x2 + y

At (−1,−1), dy
dx = (−1)2 + (−1) = 0 and d2y

dx2
= 2(−1) + (−1)2 + (−1) = −2 < 0. Since the

slope of y is zero and the graph of y is concave down, (−1,−1) is a local maximum. At
(1,−5), dy

dx = 12 + −5 = −4 6= 0 and d2y
dx2

= 2(1) + 12 + (−5) = −2 6= 0. Since neither the
first nor second derivative of y are zero, (1,−5) is neither a local extrema nor an inflection
point.

17



18 Chapter A. ANSWERS TO EXERCISES



Index

implicit differentiation, 5

multivariable function, 15
domain, 15
range, 15

optimization, 3

related rates, 11

19


	Optimization
	Optimization Problems
	Types of Optimization Problems
	Applications

	Implicit Differentiation
	Implicit Differentiation Procedure
	Example
	Without Implicit Differentiation
	With Implicit Differentiation

	Folium of Descartes
	Example: Tangent to Folium of Descartes

	Practice

	Related Rates
	Steps to solve related rates problems
	Step 1: Understand the problem
	Step 2: Draw a diagram
	Step 3: Write down what you know
	Step 4: Write an equation
	Step 5: Differentiate both sides of the equation
	Step 6: Substitute the known rates and solve for the unknown
	Step 7: Create a concluding statement

	Example

	Multivariate Functions and Partial Derivatives
	Answers to Exercises
	Index

