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Chapter 1

Differentiation

We have done some differentiation, but you haven’t been given the real definition yet,
because it is based on limits.

The idea is that we can find the slope between two points on the graph a and b like this:

m =
f(b) − f(a)

b− a

x

y

a b

f(a)

f(b)

b− a

f(b) − f(a)

If we want to find the slope at a, we take the limit of this as the b goes to a:

f ′(a) = lim
b→b

f(b) − f(a)

b− a

This idea is usually expressed using h as the difference between b and a:
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4 Chapter 1. DIFFERENTIATION

x

y

a a+ h

f(a)

f(a+ h)

h

f(a+ h) − f(a)

The formula then becomes:

f ′(a) = lim
h→0

f(a+ h) − f(a)

h

Now, at any point a, we can compute the slope of the line tangent to the function at a:

x

y

slope = f ′(a)

a
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1.1 Differentiability

Warning: Not every function is differentiable everywhere. For example, if f(x) = |x|, you
get a corner at zero.

x

y

To the left of zero, the slope is -1. To the right of zero, the slope is 1. At zero? The
derivative is not defined.

If a function has a derivative everywhere, it is said to be differentiable. Generally, you can
think of differentiable functions as smooth — their graphs have no corners.

Exercise 1

.[This problem was originally presented
as a no-calculator, multiple-choice ques-
tion on the 2012 AP Calculus BC exam.]
Let f be the function defined by f(x) =√

|x− 2| for all x. Classify each of the
following statements as true or false.

1. f is continuous at x = 2.

2. f is differentiable at x = 2.

3. limx→2 f(x) = 0.

4. x = 2 is a vertical asymptote of the
graph of f(x).

Answer on Page 47

Working Space
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1.2 Using the definition of derivative

Let’s say that you want to know the slope of f(x) = −3x2 at x = 2. Using the definition of
the derivative, that would be:

f ′(2) = lim
h→0

f(2+ h) − f(2)

h
= lim

h→0

−3(2+ h)2 −
(
−3(2)2

)
h

= lim
h→0

−12− 12h+−3(h)2 + 12

h
= −12



Chapter 2

Derivatives

In calculus, the derivative of a function represents the rate at which the function is chang-
ing at a particular point. It is a fundamental concept that has vast applications in various
fields, including physics.

2.1 Definition

The derivative of a function f(x) at a point x is defined as the limit:

f ′(x) = lim
h→0

f(x+ h) − f(x)

h
(2.1)

provided this limit exists. In words, the derivative of f at x is the limit of the rate of change
of f at x as the change in x approaches zero. The derivative of a function is equal to the
slope of the function. The derivative of a function, f(x), is denoted as f ′(x) (read out
loud as ”f prime of x”) or df/dx. The origin of this definition was shown in the previous
chapter, Differentiation.

2.1.1 Estimating the Derivative

Consider the function f(x) = x2. Suppose we want to write an equation for a line that
is tangent to the curve at x = 2 (see figure 2.1). We already have a point that the line
passes through: (2, 4). To write an equation for the tangent line, we would need to know
its slope, m.

We can estimate the slope by choosing points on either side of P, drawing a line through
those points, and calculating the slope of that secant line (it is a secant line because it
intersects the curve more than once). See figure 2.2 for a visualization.

As the points Q and R get closer to P, the better the estimate becomes.

Much scientific data is not described as continuous functions, but rather as discrete data
points. Consider the following data of a falling object:

7
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Figure 2.1: The red line is tangent to f(x) = x2 at the point (2, 4)
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Figure 2.2: The slope of the secant line is approximately the slope of the tangent line
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time (seconds) height (m)
0 50
0.5 48.775
1 45.1
1.5 38.975
2 30.4
2.5 19.375
3 5.9

A graph of the data is shown in figure 2.3.

1 2 3

10

20

30

40

50

time(sec)

height(m)

Figure 2.3: The height of a falling object over time

Suppose we wanted to estimate the velocity of the falling object at t = 1.5s. Recall that
velocity is given by the change in position divided by the change in time. We can select
data points on either side of t = 1.5s and use them to find the average velocity from t = 1s
and t = 2s (see figure 2.4):

v =
h2 − h2

t2 − t1
=

30.4m− 45.1m
2s− 1s = −14.7

m
s

Example: A 1000-gallon tank drains from the bottom in 30 minutes. The volume left in
the tank is recorded every 5 minutes, as shown in the data table below. Use the data
to estimate V ′(15) and V ′(25), including appropriate units. At which time is the tank
draining faster?
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1 2 3
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50

time(sec)

height(m)

Figure 2.4: The slope of the line connecting the data points on either side of t = 1.5s is
approximately the velocity of the falling object at t = s

t (min) V (gal)
5 694

10 444

15 250

20 111

25 28

30 0

Solution: To estimate V ′(15), we find the slope of the line connecting the data points on
either side of t = 15:

V ′(15) ≈ 111gal− 444textgal

20min− 10min

V ′(15) ≈ −333gal
10min

V ′(15) ≈ −33.3
gal
min

And we can use the data at t = 20 and t = 30 to estimate V ′(25):

V ′(25) ≈ 0gal− 111gal
30min− 20min

V ′(25) ≈ −111gal
10min

V ′(25) ≈ −11.1
gal
min

Both answers are negative because the tank is emptying, and the tank is draining faster
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at t = 15 than at t = 25.

Exercise 2

.[This question was originally presented
as a free-response, calculator-allowed ques-
tion on the 2012 AP Calculus BC Exam.]
The temperature of water in a tub at time
t is modeled by a function, W, where
W(t) is measured in degrees Fahrenheit
and t is measured in minutes. Values
of W(t) at selected times for the first 20
minutes are given in the table. Use the
data in the table to estimateW ′(12). Show
the computations that lead to your an-
swer. Using correct units, interpret the
meaning of your answer in the context
of the problem.
t (minutes) W(t) (degrees Fahrenheit)

0 55.0
4 57.1
9 61.8
15 67.9
20 71.0

Answer on Page 47

Working Space

2.2 The Derivative as a Function

We have seen how to estimate the value of a derivative at a specific point on a graph.
Suppose we wanted to describe the slope of a graph everywhere. That is: can we find
a function, g(x) that describes the slope of another function, f(x), over the domain of f?
Using the definition of a derivative, we can.

You have already seen an algorithm to find the derivatives of polynomial functions (see
chapter Differentiating Polynomials). Recall that for a function, f(x) = xn, the derivative
is f ′(x) = nxn−1. Here is the proof:

f ′(x) = lim
h→0

f(x+ h) − f(x)

h
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f ′(x) = lim
h→0

(x+ h)n − xn

h

In order to expand the polynomial, (x + h)n, we’ll need to apply the Binomial Theorem,
which tells us that:

(a+ b)n = an + nan−1b+
n(n− 1)

2!
an−2b2 +

n(n− 1)(n− 2)

3!
an−3b3 + · · ·+ nabn−1 + bn

Substituting this into our limit definition of a derivative, we see that:

f ′(x) = lim
h→0

xn + nxn−1h+ n(n−1)
2! xn−2h2 + · · ·nxhn−1 + hn − xn

h

f ′(x) = lim
h→0

nxn−1h+ n(n−1)
2! xn−2h2 + · · ·nxhn−1 + hn

h

f ′(x) = lim
h→0

nxn−1 +
n(n− 1)

2!
xn−2h+ · · ·nxhn−2 + hn−1

f ′(x) = nxn−1

Example: Use the limit definition of a derivative to find f ′(x) if f(x) = 2x3 − x2.

Solution: According to the limit definition, f ′ is:

f ′(x) = lim
h→0

f(x+ h) − f(x)

h
=

[
2 (x+ h)3 − (x+ h)2

]
−
[
2x3 − x2

]
h

f ′(x) = lim
h→0

[
2
(
x3 + 3hx2 + 3h2x+ h3

)
−
(
x2 + 2xh+ h2

)]
− 2x3 + x2

h

f ′(x) = lim
h→0

2x3 − 2x3 + 6hx2 + 6h2x+ 6h3 − x2 + x2 − 2xh− h2

h

f ′(x) = lim
h→0

6hx2 + 6h2x+ 6h3 − 2xh− h2

h

f ′(x) = lim
h→0

6x2 + 6hx+ 6h2 − 2x− h = 6x2 − 2x

Therefore, if f(x) = 2x3 − x2, then f ′(x) = 6x2 − 2x.
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Exercise 3 Finding Functions for Derivatives

.Use the limit definition of a derivative to
find an equation for f ′(x).

1. f(x) = mx+ b

2. f(x) =
√
16− x

3. f(x) = x2−1
2x−3

Answer on Page 47

Working Space

2.3 Applications in Mathematics

2.3.1 l’Hospital’s Rule

Consider the function h(x) = ln x
x−1 and suppose we are interested in the behavior of h(x)

around x = 1. If we apply the Quotient Rule, we get an indeterminate result:

lim
x→1

ln x

x− 1
=

0

0

Looking at the graph of h(x) (see figure 2.5), we can guess that limx→1
ln x
x−1 = 1.

Let’s examine the numerator and denominator separately: we’ll define f(x) = ln x and
g(x) = x− 1 (see figure 2.6).

If we zoom in very far around x = 1, the graphs begin to look linear (see figure 2.7):

We can approximate these graphs as linear functions with slopes m1 and m2, so that
the blue curve is approximated as y = m1(x − 1) and the red curve is approximated as
y = m2(x− 1). The ratio of the functions would then be

m1(x− 1)

m2(x− 1)
=

m1

m2

which is the same as the ratio of the derivatives of our linear approximations. This sug-
gests l’Hospital’s rule, that the limit of a ratio is the same as the limit of the ratio of the
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Figure 2.5: h(x) = ln x
x−1
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Figure 2.6: Examining each part of ln x
x−1 separately
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f(x) = ln x

g(x) = x− 1

Figure 2.7: As we zoom in, the graph of ln x appears linear
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derivatives for certain indeterminate forms:

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g ′(x)

.

Let’s apply l’Hospital’s rule to our limit of h(x):

lim
x→1

ln x

x− 1
= lim

x→1

d
dx ln x

d
dx(x− 1)

= lim
x→1

1
x

1
= 1

Notice our result with l’Hospital’s rule matches our guess based on the graph of h(x) =
ln x
x−1 .

L’Hospital’s rule also applies to the indeterminate result ±∞
±∞ . For a limit of the form

limx→a
f(x)
g(x) , l’Hospital’s rule applies if:

1. the original limit is of the indeterminate form 0
0 or ±∞

±∞
2. f and g are differentiable on an interval containing a (but possibly not differentiable

at a)

3. g ′(x) 6= 0 on said interval

Example: Determine limx→∞ ex

x2
.

Solution: We begin by evaluating the limit:

lim
x→∞ ex

x2
=

e∞∞2
=

∞∞
This is an indeterminate form that we can apply l’Hospital’s rule to:

= lim
x→∞

d
dxe

x

d
dxx

2
= lim

x→∞ ex

2x

Evaluating this limit, we get another indeterminate form:

=
e∞
2 ·∞ =

∞∞
Don’t panic! We can apply l’Hospital’s rule again (in fact, we can apply l’Hospital’s rule
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as many times as needed to evaluate a limit, as long as we keep getting 0
0 or ±∞

±∞):

= lim
x→∞

d
dxe

x

d
dx2x

= lim
x→∞ ex

2
=

∞
2

= ∞
and therefore, limx→∞ ex

x2
= ∞.

Exercise 4

.What is limx→0
tan x−x

x3
?

Answer on Page 48

Working Space

Exercise 5

.Evaluate each of the following limits, us-
ing l’Hospital’s rule where needed.

1. limx→3
x−3
x2−9

2. limx→1/2
6x2+5x−4
4x2+16x−9

3. limx→0+
ln x√
x

4. limx→π
1+cos x
1−cos x

5. limx→1
x sin x−1
2x2−x−1

Answer on Page 49

Working Space

2.3.2 Mean Value Theorem

The Mean Value Theorem (MVT) states that on an interval [a, b] where a continuous
function f is differentiable on an open interval (a, b), there is at least one point where the
tangent line to f has the same slope as a line connecting the points (a, f(a)) and (b, f(b)).
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Consider the graph of f(x) = x2 (see figure 2.8). The line connecting the points (−1, 1)
and (2, 4) has a slope of 1

2 . MVT tells us there must be at least one point, c, on the interval
x ∈ (−1, 2) where f ′(c) = 1

2 . We can find this point by setting f ′(x) equal to 1
2 :

2x =
1

2
→ x =

1

4

Examining the figure 2.8, you can see that the tangent at f( 14) (the black line) is parallel
to the red line connecting (−1, f(−1)) and (2, f(2)).

−2 −1 0 1 2
−2

0

2

4

Figure 2.8: f(x) = x2

Note that MVT doesn’t tell us where f ′(x) is parallel to the line connecting (a, f(a)) and
(b, f(b)), just that some value c exists that satisfies the condition.

Example: Consider a hammer thrown upwards at 5 m
s2

on Earth (where the acceleration
due to gravity is approximately −9.8m

s2
).

Solution: We can use the MVT to show that there must be some point in the hammer’s
path upwards where the velocity of the hammer is exactly equal to its average velocity as
it flies through the air.

The hammer’s rise can be described with the function y(t) = 5t − 4.9t2. The hammer
reaches its peak at approximately t = 0.51. So, we are looking for some value, c, such that

y ′(c) =
y(0.51) − y(0)

0.51− 0
=

5(0.51) − 4.9(0.512)

0.51
=

1.2755

0.51
= 2.5

Solving y ′(t) = 5 − 9.8t = 2.5, we find that the c that satisfies the MVT is approximately
0.255. This result is illustrated in figure 2.9:
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0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

Figure 2.9: The height of a hammer tossed upwards at 5m
s

MVT Practice

Exercise 6

.AT 3:30 PM, a car’s speedometer reads
30mi

hr . At 3:40 PM, it reads 50mi
hr . Show

that at some time between 3:30 and 3:340
PM, the car’s acceleration is exactly 120 mi

hr2
.

Answer on Page 50

Working Space
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Exercise 7

.Find the number c that satisfies theMVT
on the given interval.

(a) f(x) =
√
x, [0, 4]

(b)f(x) = e−x, [0, 2]

(c)f(x) = ln x, [1, 4]

Answer on Page 50

Working Space

2.4 Applications in Physics

In physics, derivatives play a vital role in describing how quantities change with respect
to one another.

2.4.1 Velocity and Acceleration

In kinematics, the derivative of the position function with respect to time gives the velocity
function, and further taking the derivative of the velocity function gives the acceleration
function. For example, if s(t) represents the position of an object at time t, then the
velocity v(t) and acceleration a(t) are given by:

v(t) =
ds

dt
and a(t) =

dv

dt
=

d2s

dt2
(2.2)

Practice

A particle’s motion is described by s(t) = t3 − 6t2 + 6t, where t is measured in seconds
and s is measured in meters. Answer the following questions about the particle’s motion:
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Exercise 8

.Find the velocity at time t.

Answer on Page 51

Working Space

Exercise 9

.What is the velocity after 2s? After 4s?

Answer on Page 51

Working Space

Exercise 10

.When is the particle at rest?

Answer on Page 52

Working Space

2.4.2 Force and Momentum

In mechanics, the derivative of the momentum of an object with respect to time gives the
net force acting on the object, as stated by Newton’s second law of motion:

F =
dp

dt
(2.3)

where F is the force, p is the momentum, and t is the time.



Chapter 3

Rules for Finding Derivatives

Derivatives play a key role in calculus, providing us with a means of calculating rates of
change and the slopes of curves. In this chapter, we present some common rules used to
calculate derivatives.

3.1 Constant Rule

The derivative of a constant is zero. If c is a constant and x is a variable, then:

d

dx
c = 0 (3.1)

3.2 Power Rule

For any real number n, the derivative of xn is:

d

dx
xn = nxn−1 (3.2)

3.3 Product Rule

The derivative of the product of two functions is:

d

dx
(fg) = f ′g+ fg ′ (3.3)

where f ′ and g ′ denote the derivatives of f and g, respectively.

3.4 Quotient Rule

The derivative of the quotient of two functions is:

21
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d

dx

(
f

g

)
=

f ′g− fg ′

g2
(3.4)

3.5 Chain Rule

The derivative of a composition of functions is:

d

dx
(f(g(x))) = f ′(g(x)) · g ′(x) (3.5)

3.6 Practice

Exercise 11

.If f is the function given, find f ′.

1. f(x) = x sin x

2. f(x) = (x3 − cos x)5

3. f(x) = sin3 x

Answer on Page 52

Working Space

Exercise 12

.Let f(x) = 7x − 3 + ln x. Find f ′(x) and
f ′(1)

Answer on Page 52

Working Space
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Exercise 13

.[This question was originally presented
as a multiple-choice, no-calculator ques-
tion on the 2012 AP Calculus BC exam.]
The position of a particle in the xy-plane
is given by the parametric equations x(t) =
t3−3t2 and y(t) = 12t−3t2. State a coor-
dinate point (x, y) at which the particle
is at rest.

Answer on Page 52

Working Space

Exercise 14

.Let f(x) =
√
x2 − 4 and g(x) = 3x − 2.

Find the derivative of f(g(x)) at x = 3.

Answer on Page 53

Working Space

Exercise 15

.The particle’s position on the x-axis is
given by x(t) = (t − a)(t − b), where a

and b are constants and a 6= b. At what
time(s) is the particle at rest?

Answer on Page 53

Working Space



24 Chapter 3. RULES FOR FINDING DERIVATIVES

Exercise 16

.[This question was originally presented
as a multiple-choice, no-calculator ques-
tion on the 2012 AP Calculus BC exam.]
Let f(x) = x

x+2 . At what values of x does
f have the property that the line tangent
to f has a slope of 1

2?

Answer on Page 53

Working Space

Exercise 17

.For t ≥ 0, the position of a particle mov-
ing along the x-axis is given by x(t) =
sin t− cos t. (a) When does the velocity
first equal 0? (b) What is the accelera-
tion at the time when the velocity first
equals 0?

Answer on Page 54

Working Space

Exercise 18

.The graph of y = e( tan x)−2 crosses the
x-axis at one point on the interval [0, 1].
What is the slope of the graph at this
point?

Answer on Page 54

Working Space
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Exercise 19

.The function f is defined by f(x) =
√
25− x2

for −5 ≤ x ≤ 5.
(a) Find f ′(x).
(b) Write an equation for the line tan-
gent to the graph at x = −3.

Answer on Page 54

Working Space

Exercise 20

.For 0 ≤ t ≤ 12, a particle moves along
the x-axis. The velocity of the particle at
a time t is given by v(t) = cos π

6 t. What
is the acceleration of the particle at time
t = 4?

Answer on Page 55

Working Space

Exercise 21

.[This question was originally presented
as a multiple-choice, calculator-allowed
question on the 2012 AP Calculus BC
exam.] Let f and g be the functions given
by f(x) = ex and g(x) = x4. On what in-
tervals is the rate of change of f(x) greater
than the rate of change of g(x)?

Answer on Page 55

Working Space
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3.7 Conclusion

These rules form the basis for calculating derivatives in calculus. Many more complex
rules and techniques are built upon these fundamental rules.



Chapter 4

First and Second Derivatives
and the Shape of a Function

4.1 Using first derivatives to describe a function

4.1.1 Critical Values

Let’s re-examine our graph showing the height of a hammer tossed in the air:

As you can see, the hammer reaches its peak around t ≈ 0.5s (see figure 4.1). Let’s add
tangent lines just before and after the peak of the hammer’s path, so we can more easily
examine how the slope of the graph changes:

In figure 4.2, we see that the slope changes from positive to negative as t increases. That
implies that f ′(t) also changes from positive to negative. In fact, at the highest point of
the hammer’s flight, the slope (and therefore f ′(t)) is exactly zero! In general,

1. If f ′(x) > 0 on an interval, then f(x) is increasing on that interval.

2. If f ′(x) < 0 on an interval, then f(x) is decreasing on that interval.

Example 1: Find where the function f(x) = 3x4 − 4x3 − 12x2 + 5 is increasing.

Solution: We want to find the intervals where f ′(x) > 0. First, we take the derivative to
find f ′(x):

f ′(x) = 12x3 − 12x2 − 24x

It will be easier to analyze the value of f ′(x) if we factor it so:

f ′(x) = 12x(x− 2)(x+ 1)

To determine where f ′(x) > 0, we start by finding where f ′(x) = 0 (in this case, this is
true when x = −1, 0, 2). These values of x are called critical values, and we will use them
to divide f ′(x) into intervals. (Critical values are also called critical numbers, and we will
use both in this text.) On each of these intervals, f ′(x) must be always positive or always
negative. This is shown in the graph below:

27
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Figure 4.1: Height of a hammer over time

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

Figure 4.2: height of a hammer over time
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Figure 4.3: f ′(x) with critical values
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As you can see in figure 4.3, f ′(x) > 0 on two intervals: x ∈ (−1, 0) and x ∈ (2,∞). These
are open intervals because f ′(x) = 0 at x = −1, x = 0, and x = 2. But what if we had a
more complex function, or didn’t have the resources to graph it? We can use a table to
help us analyze the value of f ′(x) (and therefore the behavior of f(x)). For each interval
around the critical values, we can determine if f ′(x) is positive or negative by noting the
value of the factors of f ′(x), which are 12x, x− 2, and x+ 1 in this case. For example, for
x < −1, 12x < 0, (x − 2) < 0, and (x + 1) < 0. Three negatives multiplied together is also
negative. Therefore, for x < −1, f ′(x) is negative and f(x) is decreasing. We can analyze
all of the intervals similarly and log the results in a table:

x 12x x− 2 x+ 1 f ′(x) f(x)
x < −1 negative negative negative negative decreasing

−1 < x < 0 negative negative positive positive increasing
0 < x < 2 positive negative positive negative decreasing
2 < x positive positive positive positive increasing

Notice the table method yields the same result as examining the graph: f(x) is increasing
for x ∈ (0,−1) and x ∈ (2,∞), which can also be written as x ∈ (−1, 0) ∪ (2,∞).

Exercise 22

.Let g be the function given by g(x) =
x2ekx, where k is a constant. For what
value(s) of k does g have a critical value
at x = 2

3?

Answer on Page 55

Working Space

4.1.2 Local Extrema

Examine the graphs of x2, sin x, and y =
√
4− x2 below. Each has a dot at a local extreme

(either a local minimum or local maximum). Sketch what you think the tangent line to
the graph would be at each local extreme. Use this to estimate the value of the derivative
at that point.

2 4 6

−1

−0.5

0.5

1
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Figure 4.4: f(x) = x3 + 3
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You should notice that all of the tangent lines are horizontal. Since the tangent lines at
these local extrema have a slope of 0, that tells us f ′(x) = 0 at these points as well. In
fact, for all local minima and maxima, the value of the derivative is zero at that point.
However, the converse statement is not necessarily true; just because the derivative is zero
at some x = c, it does not mean there is a local extrema at f(c). Consider f(x) = x3 + 3,
shown in figure 4.4:

At x = 0, f ′(x) = 0, but there is not a local extreme. For a local extreme to exist, the graph
of f(x) must change from increasing to decreasing, or vice versa. Look closely at figure
4.4: the function is increasing for x < 0 and x > 0. Another way of saying this is to note
that the graph of f ′(x) touches but does not cross the x-axis in this case:

If f(x) changes from increasing to decreasing, then f ′(x) is changing from positive to
negative (i.e. crossing the x-axis). Look at the derivative of f(x) = sin x, f ′(x) = cos x,
presented in figure 4.6. The x-values where local extrema exist on f(x) are marked in red
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Figure 4.5: f ′(x) = 3x2

2 4 6−0.5
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1

Figure 4.6: f ′(x) = cos x

(recall sin x = ±1 when x = nπ
2 ):

As you can see, local extrema are indicated when f ′(x) crosses the x-axis. If f ′(x) is
negative to the left of x = c and positive to the right, then f(x) has a local minimum at
x = c. On the other hand, if f ′(x) is positive to the left of x = c and negative to the right,
then f(x) has a local maximum at x = c. Any value of x = c where f ′(c) = 0 is called
a critical number or a critical value. Values where f(c) does not exist are also a critical
numbers.

4.1.3 Practice: Interval of Increasing and Decreasing, Local Extrema
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Exercise 23

.Let f be the function given by f(x) =
300x − x3. On which of the following
intervals is f increasing?

Answer on Page 56

Working Space

Exercise 24

.Find the intervals on which f(x) = x3 −
3x2 − 9x + 4 is increasing or decreasing.
Then, find all local minimum and/ormax-
imum values of f(x).

Answer on Page 57

Working Space

4.1.4 Global Extrema

Now that we’ve learned how to identify local minima and maxima, let’s expand the dis-
cussion to include global extrema. A global extreme is an absolute minimum or maximum
value of a function over a particular interval or the entire domain of the function. Let’s
examine the graph of f(x) = x4 − 5x3 + 6x2 over the domain x ∈ [−1, 4].

As you can see in figure 4.7, f(x) has two local minima and one local maximum. Addi-
tionally, the endpoints are labeled. To determine the global extrema, we need to examine
the any local extrema (identified here graphically, but you can also identify them math-
ematically using that you learned in the ”Local Extrema” subsection) and the endpoints
of the domain (or the function’s behavior at ±∞, if you are Notet restricted to a specific
domain).

In the case of f(x) = x4 − 5x3 + 6x2, forx ∈ [−1, 4], the global maximum value is 32 at
x = 4 and the global minimum is -1.623 at x = 2.593.

If a function is continuous on an interval, then there must exist a global maximum and
global minimum on that interval. These global extrema may also be local extrema (as is
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Figure 4.7: Graph of f(x) = x4 − 5x3 + 6x2

the case for f(2.593) in the example above) or not (as is the case for f(4)). Applying the
Closed Interval Method is a straightforward way to identify global (absolute) extrema.
To find the global extrema of a continuous function, f, on a closed interval [a, b]:

1. Find the values of f at the critical numbers of f in (a, b).

2. Find the values of f at the endpoints of the interval.

3. The largest of the values from steps 1 and 2 is the absolute maximum; the smallest
of the values is the absolute minimum.

Let’s use the Closed Interval Method to determine the global extrema for the function
g(x) = x− 3 sin x on the interval x ∈ [0, 2π].

To find the value of g at any critical numbers, we must first identify the critical numbers.
Recall that critical numbers are values where the first derivative of the function is 0 or
does not exist. To find critical numbers, we set g ′ equal to 0:

g ′(x) = 1− 3 cos x = 0

3 cos x = 1

cos x =
1

3

x = 1.23, 5.052

Now, we substitute these critical numbers back into g(x):

g(1.23) ≈ −1.60

g(5.052) = 7.881
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Now we need to check the endpoints:

g(0) = 0− 3 ∗ 0 = 0

g(2π) = 2π− 3 ∗ 0 = 2π ≈ 6.28

The results are presented in the table below:

x g(x)
0 0

1.23 -1.60
5.052 7.881
6.28 6.28

Therefore, for g(x) = x − 3 sin x on the interval x ∈ [0, 2π], the global maximum is
g(5.052) = 7.881 and the global minimum is g(1.23) = −1.60.

4.1.5 Practice: Global Extrema

Exercise 25

.Let f be the function defined by f(x) =
ln x
x . What is the absolute maximum value

of f?

Answer on Page 57

Working Space
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Exercise 26

.Find the global minimum andmaximum
values on the stated interval.

1. f(x) = 12+ 4x− x2, [0, 5]

2. f(t) =
√
t

1+t2
, [0, 2]

3. f(t) = 2 cos t+ sin 2t, [0, π2 ]

4. f(x) = ln x2 + x+ 1, [−1, 1]

Answer on Page 58

Working Space

4.2 Sketching f from f’

Now that we know how the shape of f is related to the value of f ′, we can predict the
shape of f if we are given f ′. Take the example f ′(x) = −(x − 1)(x − 5), shown in figure
4.8:

1 2 3 4 5 6

−4

−2

2

Figure 4.8: Graph of f ′ = −(x− 1)(x− 5)

Using the graph of f ′, we can construct an approximate sketch of f. First, let’s identify
the critical numbers. Where does f ′ = 0? Take a second to examine the graph of f ′ above
and jot down what you think the critical numbers are.

You should recall that critical numbers are x-values where f ′ = 0. Examining the graph of
f ′, we see that f ′ = 0 at x = 1 and x = 5. We can now use a table to describe the behavior
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of f:

x x− 1 x− 5 f ′ behavior of f
x < 1 negative negative negative decreasing
x = 1 zero negative zero local minimum

1 < x < 5 positive negative positive increasing
x = 5 positive zero zero local maximum
x > 5 positive positive negative decreasing

We can use this information to sketch a possible graph of f. We start by noting the location
of local extrema:

2 4 6

−4

−2

2

4

Figure 4.9: Possible graph of f

We know there is a local minimum at x = 1 and a local maximum at x = 5. We can add
sketches around these values to indicate what we know about f:

2 4 6

−4

−2

2

4

6

8

Figure 4.10: Possible graph of f
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Lastly, we know f is increasing on 1 < x < 5 and decreasing everywhere else, so we fill in
the space between our local extrema:

2 4 6

−4

−2

2

4

6

8

Figure 4.11: Possible graph of f

However, figure 4.11 is only a possible graph of f. Analyzing f ′ reveals the shape of f, but
not how high or low it is on the y-axis. Recall that the derivative of a constant is zero.
Therefore, any +c (where c is a constant) is lost when taking the derivative. So, there are
many sketches of f that fulfill the behavior of f indicated by f ′. You can see several of the
possible sketches for f in figure 4.12.

2 4 6

−5

5

10

Figure 4.12: Possible graphs of f

4.2.1 Practice Sketching f from f’
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−1 1 2 3 4 5 6 7 8
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−5

5

x

f ′(x)

Figure 4.13: Graph of f ′(x)

Exercise 27

.Use figure 4.13 to answer the following
questions:

1. On what approximate intervals is
f increasing or decreasing?

2. At what approximate values of x

does f have a local maximum or
minimum?

3. Sketch a possible graph of f in the
space below:

Answer on Page 58

Working Space
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1 2 3 4

1

2

3

4

f(x) = x2

2

g(x) =
√
x

x

f(
x
)

4.3 Using second derivatives to describe a function

4.3.1 Concavity

Let’s examine two increasing functions, f(x) = x2

2 and g(x) =
√
x:

Even though both of these functions are increasing, they have different shapes. f(x) looks
like a bowl. On the other hand, g(x) looks like an upside-down bowl. These shapes are
called concave up (in the case of f(x)) and concave down (in the case of g(x)). Both functions
are increasing on the interval x ∈ [0, 4], and therefore both f ′(x) and g ′(x) are positive on
the stated interval. Let’s look at their second derivatives, f ′′(x) and g ′′(x):

As you can see, f ′′(x) > 0 and g ′′(x) < 0. The second derivative tells us if a function is
concave up or concave down. In general:
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1 2 3 4

−3

−2

−1

1

f ′′(x) = 1

g ′′(x) = −1
4x3/2

−2 −1 1 2

−2

2

4

f(x) = 2− x2

g(x) = x2

1. If f ′′(x) > 0 for all x in a given interval, then the graph of f is concave up on the
interval.

2. If f ′′(x) < 0 for all x in a given interval, then the graph of f is concave down on the
interval.

Additionally, the second derivative can help us determine if there is a local minimum or
maximum at critical numbers. Look at the graphs of f(x) = 2 − x2 and g(x) = x2, which
both have first derivatives equal to 0 at x = 0:

When the graph is concave up, there is a local minimum where the first derivative equals
0. When the graph is concave down, there is a local maximum where the first derivative
equals 0. This is summarized with the Second Derivative Test:

Suppose f ′′ is continuous near c. Then,

1. If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.
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2. If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.

4.3.2 Inflection Points

If f is concave up when f ′′ > 0 and concave down when f ′′ < 0, what about when f ′′ = 0?
This is the value at which f changes from concave up to concave down (or vice versa),
which is called an inflection point. Similar to local extrema with f ′, if there is an inflection
point at x = c, then f ′′(c) = 0, but the converse is not necessarily true. To check if x = c

is an inflection point, then f ′′ should change signs on either side of x = c ( either from
positive to negative to from negative to positive).

Look at the graph of f(x) = x4 − 4x3. The concave up areas are shown in red, and the
concave down in blue:

−2 −1 1 2 3 4 5

−20

−10

10

Let’s examine f ′′ to confirm the inflection points are at (0, 0) and (2,−16). First, we note
that f ′′(x) = 12x2 − 24x. Factoring, we see that f ′′(x) = 12x(x − 2), which has zeroes at
x = 0 and x = 2. For x < 0, f ′′ > 0, and for 0 < x < 2, f ′′ < 0; therefore, there is an
inflection point in f at (0, 0).

Exercise 28

.Prove that the other inflection point for
f(x) = x4 − 4x3 is (2,−16).

Answer on Page 59

Working Space
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Exercise 29

.The graph below shows g ′(x). Describe
the behavior of g(x) from x = 0 to x = 2.

0.5 1 1.5 2

0.5

1

x

g ′(x)

Answer on Page 59

Working Space

Exercise 30

.[This question was originally presented
as a calculator-allowed, multiple-choice
problem on the 2012 APCalculus BC exam.]
For −1.5 < x < 1.5, let f be a func-
tion with first derivative given by f ′(x) =

e(x
4−2x2+1) − 2. State the interval(s) (to

three decimal places) for which f is con-
cave down.

Answer on Page 59

Working Space
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Exercise 31

.[The following problem was originally
presented as a calculator-allowed, multiple-
choice question on the 2012 AP Calcu-
lus BC exam.] Consider the function, f,
whose graph is shown below. Classify
each of the following statements as true
or false and explain.

1. f ′ > 0 for x ∈ (−2, 0).

2. f is differentiable at x = 0.

3. f ′′ > 0 for x ∈ (0, 2)

4. f has a critical value at x = 0

−2 −1 1 2

1

x

f(x)

Answer on Page 60

Working Space
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Exercise 32

.[The following problem was originally
presented as a calculator-allowed, multiple-
choice question on the 2012 AP Calculus
BC exam.] The graph of f ′, the deriva-
tive of f, is shown below. Classify each
of the following statements as true or
false and explain your answer.

1. f has a relative minimum at x =
−3.

2. The graph of f has a point of in-
flection at x = −2.

3. The graph of f is concave down for
0 < x < 4.

1 x

f(x)

Answer on Page 60

Working Space
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Exercise 33

.[The following problem was originally
presented as a calculator-allowed, multiple-
choice question on the 2012 AP Calcu-
lus BC exam.] Let f be a function that
is twice differentiable on −2 < x < 2

and satisfies the conditions in the table
below. If f(x) = f(−x), what are the x-
coordinates of the points of inflection of
the graph of f on −2 < x < 2?

0 < x < 1 1 < x < 2

f(x) Positive Negative
f ′(x) Negative Negative
f ′′(x) Negative Positive

Answer on Page 61

Working Space





Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 5)

1. True. f(2) exists and limx→2+f(x) = limx→2− f(x) = f(2) = 0.

2. False. Because of the absolute value, there is a corner in the graph of f at x = 2.
limx→2+ f ′(x) < 0 and limx→2− f ′(x) < 0. Therefore there is a discontinuity in f ′(x)
at x = 2 and f(x) is not differentiable at x = 2.

3. True.
√
|2− 2| =

√
0 = 0.

4. False. f(2) is defined at x = 2.

Answer to Exercise 2 (on page 11)

To estimate the slope at t = 12, we can use the data at t = 9 and t = 15. The slope of the
line connecting those points is approximate of the slope at t = 12.

y2 − y1

x2 − x1
=

67.9− 61.8

15− 9
=

6.1

6
= 1.017

The units for the numerator are degrees Fahrenheit and for the denominator are minutes.
Therefore, the estimated slope has units of degrees Fahrenheit per minute. This represents
the change in temperature of the water in the tub. When t = 12, the water in the tub is
increasing in temperature at about 1 degree Fahrenheit per minute.

Answer to Exercise 3 (on page 13)

1.
f ′(x) = lim

h→0

f(x+ h) − f(x)

h
= lim

h→0

[m (x+ h) + b] − [mx+ b]

h

f ′(x) = lim
h→0

mx+mh+ b−mx− b

h
= lim

h→0

mh

h
= lim

h→0
m = m

47
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2.
f ′(x) = lim

h→0

f(x+ h) − f(x)

h
= lim

h→0

√
16− x− h−

√
16− x

h

f ′(x) = lim
h→0

√
16− x− h−

√
16− x

h
·
√
16− x− h+

√
16− x√

16− x− h+
√
16− x

f ′(x) = lim
h→0

(16− x− h) − (16− x)

h
(√

16− x− h+
√
16− x

)
f ′(x) = lim

h→0

−h

h
(√

16− x− h+
√
16− x

) = lim
h→0

−1√
16− x− h+

√
16− x

f ′(x) =
−1√

16− x+
√
16− x

=
−1

2
√
16− x

3.

f ′(x) = lim
h→0

f(x+ h) − f(x)

h
= lim

h→0

(x+h)2−1
2(x+h)−3

− x2−1
2x−3

h

f ′(x) = lim
h→0

(
1

h

)[
x2 + 2xh+ h2 − 1

2x+ 2h− 3
−

x2 − 1

2x− 3

]
f ′(x) = lim

h→0

(
1

h

)[
x2 + 2xh+ h2 − 1

2x+ 2h− 3

(
2x− 3

2x− 3

)
−

x2 − 1

2x− 3

(
2x+ 2h− 3

2x+ 2h− 3

)]

f ′(x) = lim
h→0

(
1

h

)[(
x2 + 2xh+ h2 − 1

)
(2x− 3) −

(
x2 − 1

)
(2x+ 2h− 3)

(2x− 3) (2x+ 2h− 3)

]

f ′(x) =

(
1

h

)[
2x3 + 4x2h+ 2xh2 − 2x− 3x2 − 6xh− 3h2 + 3

(
2x3 + 2x2h− 3x2 − 2x− 2h+ 3

)
(2x− 3) (2x+ 2h− 3)

]

f ′(x) = lim
h→0

(
1

h

)[
2x2h+ 2xh2 − 6xh− 3h2 + 2h

(2x− 3) (2x+ 2h− 3)

]
f ′(x) = lim

h→0

2x2 + 2xh− 6x− 3h+ 2

(2x− 3) (2x+ 2h− 3)
=

2x2 − 6x+ 2

(2x− 3)2

Answer to Exercise 4 (on page 16)

First, let’s confirm that l’Hospital’s rule applies here:

lim
x→0

tan x− x

x3
=

0− 0

0
=

0

0



49

Therefore, we can apply l’Hospital’s rule:

lim
x→0

tan x− x

x3
= lim

x→0

d
dx(tan x− x)

d
dxx

3

= lim
x→0

sec2 x− 1

3x2
=

1− 1

0
=

0

0

which is an indeterminate form. We apply l’Hospital’s rule again:

lim
x→0

tan x− x

x3
= lim

x→0

d
dx(sec

2x− 1)
d
dx3x

2

= lim
x→0

2 tan x sec2 x
6x

=
2(0)(12)

6 · 0
=

0

0

which is also an indeterminate form. We apply l’Hospital’s rule again:

lim
x→0

tan x− x

x3
= lim

x→0

d
dx(2 tan x sec2 x)

d
dx6x

= lim
x→0

2 sec2 x[2 tan2 x+ sec2 x]
6

=
2 · 1 · [2 · 0+ 1]

6

=
2

6
=

1

3

Answer to Exercise 5 (on page 16)

1. limx→3
x−3
x2−9

= 0
0 , so we apply l’Hospital’s rule. limx→3

x−3
x2−9

= limx→3
1
2x = 1

6

2. limx→1/2
6x2+5x−4
4x2+16x−9

= 0
0 , so we apply l’Hospital’s rule. limx→1/2

6x2+5x−4
4x2+16x−9

= limx→1/2
12x+5
8x+16 =

11
20

3. limx→0+
ln x√
x
= −∞

0 = −∞. This limit does not require l’Hospital’s rule because it is
evaluable

4. limx→1
x sin x−1
2x2−x−1

= 1·sin 1−1
2(1)2−1−1

= 0
0 , so we apply l’Hospital’s rule: limx→1

x sin x−1
2x2−x−1

=

limx→1

d
dx

(x sin x−1
d
dx

(2x2−x−1
= limx→1

x·cos x−1+sin x−1
4x−1 = 1·cos 0+sin 0

4−1 = 1·1+0
−3 = −1

3 .



50 Chapter A. ANSWERS TO EXERCISES

Answer to Exercise 6 (on page 18)

The speed of a car must a continuous, differentiable function, since your car can’t ”jump”
from one speed to another: it must smoothly accelerate from one speed to another. There-
fore, the Mean Value Theorem applies. The average acceleration from 3:30 PM to 3:40 PM
is given by:

change in speed
change in time =

50mi
hr − 30mi

hr

3 : 40PM− 3 : 30PM

Simplifying and converting minutes to hours, we see the average acceleration is:

20mi
hr

1
6hr

= 120
mi

hr2

Therefore, by MVT, there must be some time between 3:30 and 3:40 PM where the car’s
acceleration is exactly 120 mi

hr2
.

Answer to Exercise 7 (on page 19)

(a) For the domain given, f(x) is defined and differentiable. Finding the slope of the
secant line connecting the endpoints:

f(b) − f(a)

b− a
=

√
4−

√
0

4− 0
=

2

4
=

1

2

So we are looking for some number c such that f ′(c) = 1
2 . Let’s find f ′(x):

f ′(x) =
d

dx

√
x =

1

2
√
x

Setting this equal to 1
2 to find c:

f ′(c) =
1

2
√
c
=

1

2
√
c = 1

c = 1

(b)For the domain given, f(x) is defined and differentiable. Finding the slope of the secant
line connecting the endpoints:

f(2) − f(0)

2− 0
=

e−2 − e0

2
=

1− e2

2e2
≈ −0.432
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And find f ′(x):
f ′(x) = −e−x

According to MVT, there must be some c such that f ′(c) ≈ −0.432:

−e−c ≈ −0.432

e−c ≈ 0.432

−c ≈ ln 0.432

c ≈ − ln 0.432 ≈ 0.839

(c) For the domain given, f(x) is defined and differentiable. Finding the secant line con-
necting the endpoints:

f(b) − f(a)

b− a
=

ln 4− ln 1

4− 1
=

ln 4

3
≈ 0.462

And find f ′(x):
f ′(x) =

1

x

According to MVT, there must be some c such that f ′(c) ≈ 0.462

f ′(c) =
1

c
≈ 0.462

c ≈ 1

0.462
= 2.164

Answer to Exercise 8 (on page 20)

Velocity is the derivative of position. Therefore, v(t) = s ′(t) = 3t2 − 12t+ 6.

Answer to Exercise 9 (on page 20)

v(2) = 3(2)2 − 12(2) + 6 = −6
m

s

v(4) = 3(4)2 − 12(4) + 6 = 6
m

s
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Answer to Exercise 10 (on page 20)

When the particle is at rest, v(t) = 0.

3t2 − 12t+ 6 = 0

3(t2 − 4t+ 2) = 0

t2 − 4t+ 2 = 0

This is not easily factorable, so we will use the quadratic formula:

t =
−(−4)±

√
(−4)2 − 4(1)(2)

2(1)

x =
4±

√
16− 8

2
= 2±

√
2 ≈ 0.586, 3.414

Therefore, the particle is at rest at 0.586s and 3.414s.

Answer to Exercise 11 (on page 22)

1. dy
dx = d

dx [x sin x] = x d
dx sin x+ sin x d

dxx = x(− cos x) + sin x(1) = sin x− x cos x

2. By the chain rule, f ′(x) = 5(x3 − cos x)4 · d
dx(x

3 − cos x) = 5(x3 − cos x)4 · (3x2 + sin x)

3. By the chain rule, f ′(x) = d
d(sin x) [sin

3 x]× d
dx sin x = 3 sin2 x · cos x

Answer to Exercise 12 (on page 22)

f ′(x) = d
dx(7x) −

d
dx(3) +

d
dx(ln x) = 7− 0+ 1

x = 7− 1
x and f ′(1) = 7− 1

1 = 6

Answer to Exercise 13 (on page 23)

The particle is at rest when x ′(t) = y ′(t) = 0. First, we find each of the derivatives:

x ′(t) = 3t2 − 6t

y ′(t) = 12− 6t

We can solve y ′ = 0 for t and find that the y-velocity is 0 when t = 2. Substituting t = 2

into our expression for x ′, we find x ′(2) = 3(2)2 − 6(2) = 0. Therefore, the particle is at
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rest when t = 0. To find the xy-coordinate, we substitute t = 2 into x(t) and y(t):

x(2) = (2)3 − 3(2)2 = 8− 12 = −4

y(2) = 12(2) − 6(2) = 24− 12 = 12

Therefore, the particle is at rest when it is located at (−4, 12).

Answer to Exercise 14 (on page 23)

f(g(x)) =
√
(3x− 2)2 − 4 =

√
9x2 − 12x and d

dxf(g(x)) =
18x−12

2
√
9x2−12x

. Substituting x = 3, we
find f ′(g(x)) = 18(3)−12

2
√

9(3)2−12(3)
= 42

2
√
45

= 21

3
√
5
= 7√

5

Answer to Exercise 15 (on page 23)

First, recall that the velocity of a particle is the derivative of its position function. There-
fore, v(t) = x ′(t) = d

dt [(t − a)(t − b)]. Applying the Product Rule for derivatives, we see
that v(t) = (t− a)(1) + (t− b)(1) = 2t− a− b. To find the time(s) when the particle is at
rest, we set v(t) = 0 and solve for t.

0 = 2t− a− b

2t = a+ b

t =
a+ b

2

Answer to Exercise 16 (on page 24)

The question is asking when the derivative of f is 1
2 . We will take the derivative and set

it equal to 1
2 .

f ′(x) =
(x+ 2)(1) − x(1)

(x+ 2)2
=

2

(x+ 2)2

2

(x+ 2)2
=

1

2

4 = (x+ 2)2

±2 = x+ 2

x = 2− 2 = 0 and x = −2− 2 = −4
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Answer to Exercise 17 (on page 24)

(a) Let t0 be the time at which the particle is first at rest. The velocity of the particle is
given by v(t) = x ′(t) = cos t+ sin t. Setting v(t) = 0, we find:

cos t = − sin t

which is true for t = 3π+4n
4 , where n is an integer. Therefore, the first time the velocity is

0 is t0 = 3π
4 .

(b) To find the acceleration at t = 3π
4 , we take the derivative of the velocity function to

yield the acceleration function.

a(t) = v ′(t) = − sin t+ cos t

. Substituting t = 3π
4 , we find the acceleration is − sin 3π

4 + cos 3π
4 = −

√
2

2 −
√
2
2 = −

√
2

Answer to Exercise 18 (on page 24)

First, we find the x such that y = 0

0 = etan x − 2

2 = etan x

ln 2 = tan x

x = arctan (ln 2) = arctan 0.693 ≈ 0.606

Then, we find the slope of the function at x = 0.606 by finding y ′(0.606)

y ′ = etan x(sec x)2 = etan x

(cos x)2

y ′(0.606) =
etan 0.606

(cos 0.606)2 = 2.961

Answer to Exercise 19 (on page 25)

(a) Apply the chain rule to find f ′(x)

f ′(x) =
1

2
√
25− x2

· (−2x) =
−x√

25− x2

.
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(b) First, substitute x = −3 into f ′(x)

f ′(−3) =
−(−3)√
25− (−3)2

=
3√
16

=
3

4

This is the slope of the line. To complete an equation for the tangent line, we need a point.
We know the tangent line touches f(x) at x = −3, so the tangent line must pass through
the point (−3, f(−3)).

f(−3) =
√
25− (−3)2 = 4

We use m = 3
4 and the coordinate point (x1, y1) = (−3, 16) to complete the equation

y− y1 = m(x− x1)

y− 16 =
3

4
(x+ 3)

Answer to Exercise 20 (on page 25)

a(t) = v ′(t) = −
π

6
sin π

6
t

a(4) = −
π

6
sin 2π

3
= −

π

6
·
√
3

2
= −

π
√
3

12

Answer to Exercise 21 (on page 25)

Recall that the rate of change of a function is given by the derivative of that function.
Therefore, we are looking for the interval(s) where f ′(x) > g ′(x). First, we find each
derivative:

f ′(x) = ex

g ′(x) = 4x3

We are looking for x-values, such that ex > 4x3. This inequality can be restated as ex−4x3 >

0. Using a calculator, you should find that ex−4x3 = 0 when x ≈ 0.831 and x ≈ 7.384. We
will check values on either side of and in the interval x ∈ (0.831, 7.384) to determine the
sign value of ex − 4x3. We know that when x = 0, ex − 4x3 > 0, when x = 5, ex − 4x3 < 0,
and when x = 10, ex− 4x3 > 0. Therefore, f ′(x) is greater than g ′(x) on the open intervals
x ∈ (−∞, 0.831) ∪ (7.384,∞).

Answer to Exercise 22 (on page 29)

Recall that critical values are values of x where g ′(x) = 0 or is undefined. We need to find
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an expression for g ′(x), set it equal to zero when x = 2
3 , and solve for k.

g ′(x) = x(2)[k ∗ expkx] + expkx[2x]

g ′(
2

3
) = (

2

3
)2[k ∗ exp 2k

3
] +

4

3
exp 2k

3
= 0

4k

9
e

2k
3 +

4

3
e

2k
3 = 0

(
4k

9
+

4

3
)e

2k
3 = 0

There are no real values of k such that e
2k
3 = 0, therefore, we will examine the other factor:

4k

9
+

4

3
= 0

4k

9
=

−4

3

k

3
= −1

k = −3

Therefore, g(x) has a critical value at x = 2
3 when k = −3.

Answer to Exercise 23 (on page 32)

First, we will find f ′ and set it equal to zero:

f ′(x) = 300− 3x2 = 0

300 = 3x2 → x = ±
√
100 = ±10

(Note: f ′(x) = 3(10 − x)(10 + x), which implies roots at x = ±10. Now, we will evaluate
the value of f ′(x) for x < −10, −10 < x < 10, and x > 10.

Value of x (10-x) (10+x) f ′(x) f(x) behavior
x < −10 positive negative negative decreasing

−10 < x < 10 positive positive positive increasing
x > 10 negative positive negative decreasing

Therefore, the function is increasing on the interval x ∈ [−10, 10] because f ′(x) > 0 for
x ∈ [−10, 10].



57

Answer to Exercise 24 (on page 32)

Given f(x) = x3 − 3x2 − 9x + 4, it follows that f ′(x) = 3x2 − 6x − 9. Factoring, we find
that f ′(x) = 9(x − 3)(x + 1) and f ′(x) = 0 when x = 3 and x = −1. We construct our
table to help us analyze the value of f ′(x) and behavior of f(x) on the whole domain of
the function:

Value of x (x− 3) (x+ 1) f ′(x) f(x) behavior
x < −1 negative negative positive increasing

−1 < x < 3 negative positive negative decreasing
x > 3 positive positive positive increasing

So, f(x) is increasing for x ∈ (−∞,−1) ∪ (3,∞) and decreasing for x ∈ (−1, 3). Since
f ′(−1) = 0 and changes from positive to negative, f(x) has a local maximum at x = −1.
And since f ′(3) = 0 and changes from negative to positive, f(x) has a local minimum at
x = 3.

Answer to Exercise 25 (on page 34)

First, we identify any critical numbers:

f ′(x) =
x ∗ ( 1x) − ln x ∗ 1

x2
=

1− ln x

x2

Recall that critical numbers are values where f ′(x) = 0 or does not exist. We might identify
x = 0 as a critical number, but the presence of ln x limits the domain of the function to
x ∈ (0,∞), excluding x = 0. For all x ∈ (0,∞), f ′(x) exists. So, we look for values where
f ′(x) = 0.

1− ln x

x2
= 0

1− ln x = 0

1 = ln x

x = e

Finding the value of f(x) at x = e:

f(e) =
ln e

e
=

1

e

Because the domain of f(x) is on an open interval, instead of checking the endpoints directly,
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we’ll take the limits as x approaches 0 and ∞.

lim
x→0

ln x

x
= −∞ <

1

e

lim
x→∞ ln x

x
= 0 <

1

e

Therefore, the absolute maximum values of f(x) = ln x
x is 1

e at x = e.

Answer to Exercise 26 (on page 35)

1. f ′(x) = 4− 2x and to find the critical numbers, we set f ′(x) = 0:

4− 2x = 0

x = 2

We evaluate f(x) at x = 0, 2, 5:

f(0) = 12+ 4(0) − 02 = 12

f(2) = 12+ 4(2) − 22 = 12+ 8− 4 = 16

f(5) = 12+ 4(5) − 52 = 12+ 20− 25 = 7

Therefore, the global maximum is f(2) = 16 and the global minimum is f(5) = 7.

2.

Answer to Exercise 27 (on page 38)

[Your answers are meant to be estimates; anything within ±0.1 of the given answers are
reasonable estimates.]

1. f(x) is increasing on the intervals x ∈ (−0.5, 2.2) ∪ (4, 7.3). f(x) is decreasing on the
intervals x ∈ (−∞,−0.5) ∪ (2.2, 4) ∪ (7.3,∞).

2. f(x) has local maxima at x = 2.2, 7.3 and local minima at x = −0.5, 4.

3. Your sketch should show the maxima and minima identified in part 2. One possible



59

solution is shown below. −1 0 1 2 3 4 5 6 7 8

0

5

10

15

Answer to Exercise 28 (on page 41)

Noting that f ′′(2) = 0, we examine the value of f ′′ around x = 2. For 0 < x < 2 , f ′′ < 0,
which indicates f is concave down in the domain x ∈ (0, 2). For x > 2, f ′′ > 0, which
indicates f is concave up. Therefore, there is an inflection point at x = 2 for f. Recalling
that f(x) = x4 − 4x3, we find the coordinate of the inflection point by substituting x = 2:

f(2) = 24 − 4 ∗ 23 = 16− 4 ∗ 8 = 16− 32 = −16

Therefore, f(x) has an inflection point at (2,−16).

Answer to Exercise 29 (on page 42)

According to the graph, g ′ is positive and increasing. Therefore, g is increasing (because
g ′ is positive) and concave up (because g ′ is increasing, and therefore g ′′ is positive).

Answer to Exercise 30 (on page 42)

Since the question asks about concavity, we need to examine the second derivative:

f ′′(x) =
d

dx
f ′(x) =

d

dx

[
e(x

4−2x2+1) − 2
]

f ′′(x) =
(
x4 − 2x2 + 1

)
e(x

4−2x2+1)
(
4x3 − 4x

)
The second derivative equals zero when x4 − 2x2 + 1 = (x2 − 1)2 = 0 or 4x3 − 4x =
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4(x)(x2 − 1) = 0, which gives roots x = 0, x = 1, and x = −1. So the intervals we need
to test are (−1.5,−1), (−1, 0), (0, 1), and (1, 1.5). To test x ∈ (−1.5,−1), we will substitute
x = −1.25 into f ′′(x):

f ′′(−1.25) = −3.85928 < 0

Therefore, f(x) is concave down on the interval x ∈ (−1.5,−1). Next, we test x ∈ (−1, 0):

f ′′(−0.5) = 2.63258 > 0

So, we eliminate x ∈ (−1, 0). Next, we test x ∈ (0, 1):

f ′′(0.5) = −2.63258 < 0

And f(x) is concave down on the interval x ∈ (0, 1). Finally, we test the interval x ∈ (1, 1.5):

f ′′(1.25) = 3.85928 > 0

Which eliminates that interval. Therefore, f(x) is concave down on the intervals x ∈
(−1.5,−1) and x ∈ (0, 1).

Answer to Exercise 31 (on page 43)

1. False. For x ∈ (−2, 0), the slope of f(x) is negative, which implies that f ′(x) < 0 for
x ∈ (−2, 0).

2. False. The graph comes to a point at x = 0, therefore limx→0+ f ′(x) 6= limx→0− f ′(x),
which means the limit does not exist and f is not differentiable at x = 0.

3. True. The graph of f(x) is concave up for x ∈ (0, 2), which means the second deriva-
tive is positive.

4. True. Recall that critical values are where derivatives equal 0 or do not exist. Since
we have established that f(x) does not exist at x = 0, then there is a critical value at
x = 0.

Answer to Exercise 32 (on page 44)

1. True. f ′(3) = 0 and f ′ has a positive slope, which means there is a local extreme and
f is concave up at x = 3. Therefore, there is a local minimum at x = 3.

2. False. Though it appears that f ′′ = 0 at x = −2, the slope of f ′ is positive before and
after. Therefore, f ′′ does not cross the x-axis and there is not an inflection point at
x = −2.

3. True. For 0 < x < 4, the slope of f ′ is negative, which means f ′′ is negative, which
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means f is concave down.

Answer to Exercise 33 (on page 45)

The graph of f has inflection points at x = −1 and x = 1. Since f(x) = f(−x), we can expand

the table to include the entire windowwe are investigating:

−2 < x < −1 −1 < x < 0 0 < x < 1 1 < x < 2

f(x) Negative Positive Positive Negative
f ′(x) Negative Negative Negative Negative
f ′′(x) Positive Negative Negative Positive

Recall that inflection points occur when f ′′ changes from positive to negative or from neg-
ative to positive. Examining the table, we see that the sign of f ′′ changes at x = −1 and
x = 1.
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Index

chain rule, 22
constant rule, 21

derivative, 7

power rule, 21
product rule, 21

quotient rule, 21
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