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Chapter 1

Graphing Polynomials

In using polynomials to solve real-world problems, it is often handy to know what the
graph of the polynomial looks like. You have many of the tools you need to start to sketch
out the the graphs:

• To find where the graph crosses the y-axis, you can evaluate the polynomial at x = 0.

• To find where the graph crosses the x-axis, you can find the roots of the polynomial.

• To find the level spots on the graph (often the top of a hump or the bottom of a
dip), you can take the derivative of the polynomial (which is a polynomial), and
find the roots of that.

FIXME: Diagram of those things

For example, if you wanted to graph the polynomial f(x) = −x3−x2+6x, you might plug
in a few values that are easy to compute:

• f(−2) = −8

• f(−1) = −6

• f(0) = 0

• f(1) = 4

• f(2) = 0

So, right away, we know two roots: x = 0 and x = 2. Are there others? We won’t know
until we factor the polynomial:

− x3 − x2 + 6x

= (−1x)(x2 + x− 6)

= (−1x)(x+ 3)(x− 2)

So, yes, there is a third root: x = −3

3
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What about the level spots? f ′(x) = −3x2 − 2x+ 6. Where is that zero?

− 3x2 − 2x+ 6 = 0

x2 +
2

3
x− 2 = 0

We have a formula for quadratics like this:

x = −
b

2
±

√
b2 − 4c

2

= −
2
3

2
±

√(
2
3

)2
− 4(−2)

2

= −
1

3
±

√
4
9 + 8

2

= −
1

3
±

√
85
9

2

= −
1

3
±

√
85

6

≈ 1.20 and − 1.87

Now, you might plug those numbers in:

• f(1.2) ≈ 4.0

• f(−1.87) ≈ −8.2

1.1 Leading term in graphing

There is one more trick you need before you can draw a good graph of a polynomial.
As you go father and farther to the left and right, where does the function go? In other
words, does the graph go up on both ends (like a smile)? Or does it go down on both ends
(like a frown)? Or does the negative end go down (frowny) while the positive end go up
(smiley)? Or does the negative go up (smiley) and the positive end go down (frowny)?

Assuming the polynomial is not constant, there are only those four possibilties. It is
determined entirely by the leading term of the polynomial. If the degree of the leading
term is even, both ends go in the same direction (both are smiley or both are frowny). If
the coefficient of the leading term is positive, the positive end is smiley.

The graph we are working on has a leading term of −1x3. The degree is odd, thus the
ends go in different directions. The coefficient is negative, so the positive end points down.
Now, you can draw the graph, which should look something like this:
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Chapter 2

Interpolating with Polynomials

Let’s say someone on a distant planet records video of a hammer being throw up into
the air. They send you three random frames of the hammer in flight. Each frame has a
timestamp, and you can clearly see how high the hammer is in each one. Can you create
a 2nd degree polynomial that explains the entire flight of the hammer?

In other words, you have three points (t0, h0), (t1, h1), (t2, h2). Can you find a, b, c such
that the graph of at2 + bt+ c = t passes through all three points?

The answer is yes. In fact, given any n points, there is exactly one n−1 degree polynomial
that passes through all the points.

There are a lot of variables floating around. Let’s make it concrete: The photos are taken
at t = 2 seconds, t = 3 seconds, and t = 4 seconds. In those photos, the height of the
hammer is 5m, 7m, and 6m. So, we want our polynomial to pass through these points:
(2, 5), (3, 7), (4,6).

How can you find that polynomial? Let’s do it in small steps. Can you create a 2nd
degree polynomial that is not zero at t = 2, but is zero at t = 3 and t = 4? Yes, you can:
(x−3)(x−4) has exactly two roots at t = 3 and t = 4. The value of this polynomial at t = 2

is (2 − 3)(2 − 4) = 2. We really want it to be 5m, so we can divide the whole polynomial
by 2 and multiply it by 5.

Now we have the polynomial:

f0(x) =
5

(2− 3)(2− 4)
(x− 3)(x− 4) =

5

2
x2 −

35

2
x+ 30

7



8 Chapter 2. INTERPOLATING WITH POLYNOMIALS

This is a second degree polynomial that is 5 at t = 2 and 0 at t = 3 and t = 4.

Now, we create a polynomial that is 7 at t = 3 and 0 at t = 2 and t = 4:

f1(x) =
7

(3− 2)(3− 4)
(x− 2)(x− 4) = −7x2 + 42x− 56

Finally, we create a polynomial that is 6 at t = 4 and zero at t = 2 and t = 3:

f2(x) =
6

(4− 2)(4− 3)
(x− 2)(x− 3) = 3x2 − 15x+ 18

Adding these three polynomials together gives you a new polynomial that touches all
three points:

f(x) =
5

2
x2 −

35

2
x+ 30− 7x2 + 42x− 56+ 3x2 − 15x+ 18 = −

3

2
x2 +

19

2
x− 8

You can test this with your Polynomial class. Create a file called test_interpolation.py.
Add this code:

from Polynomial import Polynomial
import matplotlib.pyplot as plt

in_x = [2,3,4]
in_y = [5,7,6]

pn = Polynomial([-8, 19/2, -3/2])
print(pn)

# These lists will hold our x and y values
x_list = []
y_list = []

# Starting x
current_x = 1.5

while current_x <= 4.5:
# Evaluate pn at current_x
current_y = pn(current_x)

# Add x and y to respective lists
x_list.append(current_x)
y_list.append(current_y)
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# Move x forward
current_x += 0.05

# Plot the curve
plt.plot(x_list, y_list)

# Plot black circles on the given points
plt.plot(in_x, in_y, "ko")
plt.grid(True)
plt.show()

You should get a nice plot that shows the graph of the polynomial passing through those
three points.

In general, then, if you provide any three points (t0, h0), (t1, h1), (t2, h2), there is a second
degree polynomial that pass through all three:

h0

(t0 − t1)(t0 − t2)
(x−t1)(x−t2)+

h1

(t1 − t0)(t1 − t2)
(x−t0)(x−t2)+

h2

(t2 − t0)(t2 − t1)
(x−t0)(x−t1)

What if you are given 9 points ((t0, h0), (t1, h1), . . . , (t8, h8)) and want to find a 8th degree
polynomial that passes through all of them? Just what you would expect:

h0

(t0 − t1)(t0 − t2) . . . (t0 − t8)
(x−t1)(x−t2) . . . (x−t8)+. . .+

h8

(t8 − t0) . . . (t8 − t7)
(x−t0) . . . (x−t7)

FIXME: Do I need to define summation and prod here?

The general solution is, given n points, the n − 1 degree polynomial that goes through
them is

y =

n∑
i=0

 ∏
0≤j≤n

j6=i

x− tj

ti − tj

hi

That would be tedious for a person to compute, but computers are perfect for this stuff.
Let’s create a method that creates instances of Polynomial using interpolation.

2.1 Interpolating polynomials in python

Your method will take two lists of numbers, one contains x-values and the other contains
y-values. So comment out the line that creates the polynomial in test_interpolation.py
and create it from two lists:
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in_x = [2,3,4]
in_y = [5,7,6]
# pn = Polynomial([-8, 19/2, -3/2])
pn = Polynomial.from_points(in_x, in_y)
print(pn)

Add the following method to your Polynomial class in Polynomial.py

@classmethod
def from_points(cls, x_values, y_values):

coef_count = len(x_values)

# Sums start with a zero polynomial
sum_pn = Polynomial([0.0] * coef_count)
for i in range(coef_count):

# Products start with the constant 1 polynomial
product_pn = Polynomial([1.0])
for j in range(coef_count):

# Must skip j=i
if j != i:

# (1x - x_values[j]) has a root at x_values[j]
factor_pn = Polynomial([-1 * x_values[j], 1])
product_pn = product_pn * factor_pn

# Scale so product_pn(x_values[i]) = y_values[i]
scale_factor = y_values[i] / product_pn(x_values[i])
scaled_pn = scale_factor * product_pn

# Add it to the sum
sum_pn = sum_pn + scaled_pn

return sum_pn

It should work exactly the same as before. You should get the same polynomial printed
out as before as well as the same plot of the curve passing through the three points.

How about five points? Change in_x and in_y at the start of test_interpolation.py:

in_x = [1.7, 2, 2.7, 3.5, 4, 4.4]
in_y = [8, 12, 1, 4, -1, 6]
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You should get a polynomial that passes through all five points:

11.21x5 − 171.05x4 + 1019.44x3 − 2957.53x2 + 4161.78x− 2258.75

It should look like this:





Chapter 3

Limits

The asymptotic behavior we see in rational functions suggests that we need to expand our
vocabulary of function characteristics. We examined vertical asymptotes and end behavior
through graphs and tables, and discussed them in English. The language of limits enables
us to discuss these attributes mathematically and with greater efficiency.

Let’s revisit an example from the previous chapter. This function has a hole at x = 1, a
vertical asymptote at x = 3, and a horizontal asymptote of y = 1.

f(x) =
x2 − 3x+ 2

x2 − 4x+ 3
=

(x− 1)(x− 2)

(x− 1)(x− 3)

−4 −2 2 4

−4

−2

2

4

x

f(x)

Figure 3.1: Graph of f(x) = x2−3x+2
x2−4x+3

with asymptotes

First, consider the vertical asymptote. We see that the graph goes down as it hugs the
left side of the vertical asymptote, and goes up as it hugs the right side. We can describe
these behaviors as the left- and right-hand limits, respectively. We say that the left-hand
limit of f at x = 3 is negative infinity. Another way of communicating this is to say that
as x approaches 3 from the left, the function approaches negative infinity. Symbolically,
we summarize this as

lim
x→3−

f(x) = −∞
The little negative sign in x → 3− indicates we are approaching x = 3 from the left (the
negative side of the axis).

Similarly, the right-hand limit of f at x = 3 is positive infinity. In other words, as x

13



14 Chapter 3. LIMITS

approaches 3 from the right, the function approaches positive infinity. Symbolically, we
write

lim
x→3+

f(x) = ∞
This time, the little + indicates we are approaching the x-value from the right (positive)
side of the axis.

The limit of a function at a particular x-value is the y-value that the function approaches
as it approaches the given x-value. In the previous example, we could only specify the
left- and right-hand limits, because they were different. In cases where the left- and right-
hand limits are equal, we can say that the function has a limit there. The hole in our
function f is one such value. We see that as we approach the hole from both the left and
right, the function takes on values near 1

2 . This is more apparent numerically:

x 0.9 0.99 0.999 1 1.001 1.01 1.1
f(x) 0.5238 0.5025 0.5003 undefined 0.4998 0.4975 0.4737

We can also see this by zooming in on the graph (see figure ??):

0.6 0.8 1 1.2 1.4

0.35

0.4

0.45

0.5

0.55

0.6

x

f(x)

0.95 1 1.05 1.1

0.48

0.49

0.5

0.51

0.52

x

f(x)

Figure 3.2: Two graphs of f(x) = x2−3x+2
x2−4x+3

zoomed in about x = 1

The left-hand and right-hand limits of f at 1 are both 1
2 . Since they are equal, we can also

say that the limit of f at 1 is 1
2 . This allows us to efficiently discuss the behavior of f at

1, even though the function is not defined there, as substituting 1 into the function gives
division by zero.

lim
x→1−

f(x) = lim
x→1+

f(x) = lim
x→1

f(x) =
1

2
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We can also talk about limits at x-values where nothing weird is happening (that is, no
hole or vertical asymptote). For example, as x approaches 4 from the left and right, y
approaches 2.

x 3.9 3.99 3.999 4 4.001 4.01 4.1
f(x) 2.1111 2.0101 2.0010 2 1.9990 1.9901 1.9091

In this case, since nothing weird is happening, the limit is equal to the function value.
This is an example of continuity, which we will discuss in more detail in the next chapter.
By contrast, at the vertical asymptote x = 1, since the left- and right-hand limits are not
equal, we say the function does not have a limit, or the limit does not exist.

Finally, let’s consider the horizontal asymptote of f. The graph hugs the line y = 1 as x

goes far to the left and far to the right. We say that as x approaches negative infinity, f
approaches 1; likewise, that as x approaches positive infinity, f approaches 1. We write
these symbolically as limx→−∞ f(x) = 1 and limx→∞ f(x) = 1.

Exercise 1 Limits Practice 1

.Determine the left- and right-hand lim-
its of the function as x approaches the
given values. At x-values where the limit
exists, determine it.

1. p(x) = x+3
x2+9x+18

, x = −6,−5,−3,∞

Answer on Page 45

Working Space

We have seen two weird behaviors of rational functions at certain x-values: holes and
vertical asymptotes. Now, we will examine another type of weird behavior: jumps. This is
a characteristic of some piecewise-defined functions. In piecewise-defined functions, the
domain is divided into two or more pieces, and a different expression is used to give the
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y-value depending on which piece contains the x- value. One common piecewise-defined
function is the floor function (shown in figure 3.3), sometimes denoted bxc. The standard
floor function rounds any real number down to the nearest integer. So, for a price quoted
in dollars and cents, the floor would just be the number of dollars.

−4 −2 2 4

−4

−2

2

4

x

y

Figure 3.3: Graph of y = bxc

When x is exactly 1, the function value is 1: the number of dollars in a price of $1.00.
When x is any number greater than 1 but less than 2, the function value is still 1. Also,
b1.01c, b1.5c, andb1.99999c are all 1. As we continue to look to the right, once x equals
exactly 2, h jumps up to the value 2. So, limx→2−bxc = 1, while limx→2+bxc = 2.

Besides rational and piecewise defined functions, there are other functions with interesting
limits. Consider the standard exponential function, y = ex (shown in figure 3.4).

−4 −2 2 4

2

4

6

8

10

x

y

Figure 3.4: Graph of y = ex

As x increases, y increases without bound; that is, limx→∞ ex = ∞. However, looking
far to the left, we see that y hugs the x-axis. This is because raising e to a large negative
exponent is the same as 1 divided by e raised to a large positive exponent; that is, 1
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divided by a very large number, which yields a very small positive number. In limit
notation, limx→−∞ ex = 0. This example illustrates that horizontal asymptotes need not
model end behavior in both directions. Note that this reasoning holds for y = bx for any
b > 1, so all such functions have the same horizontal asymptote, y = 0.

We know that the natural logarithm function, y = ln x, is the inverse of y = ex. Since
inverse functions swap the role of x and y, it stands to reason that a horizontal asymptote
in one function corresponds with a vertical asymptote in the other function, and that is
indeed the case (see figure 3.5).

2 4 6 8 10

−4

−2

2

4

x

y

Figure 3.5: Graph of y = ln x

An untransformed logarithm function is defined only for positive inputs. That is because
it is not possible to find an exponent of a positive number that will yield a negative or
zero result. What type of exponent on a positive number yields a number near zero? That
would be a large-magnitude negative number. So, on the logarithm graph, large negative
y-values correspond with x-values only slightly greater than zero. So, ln x (and log2x,
and indeed logbx for any b > 1) approaches negative infinity as x approaches 0 from the
right. There is no left-hand limit at 0, however. In limit notation, limx→0+ ln x = −∞.
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Exercise 2 Limits Practice 2

.State the asymptotes of the following trans-
formed exponential and logarithmic func-
tions. Give the limit statement which de-
scribes the behavior of the function along
the asymptote.

1. y = 3x + 1

2. y = log2(x− 4)

3. y = 21−x

4. y = log10(−2x)

Answer on Page 45

Working Space

We next consider two functions that each have two horizontal asymptotes. These two
seemingly obscure functions are quite important in data science.

−10 −5 5 10

−2

−1

1

2

x

y

Figure 3.6: Graph of y = arctan x
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We know that the arctangent, or inverse tangent, function is the inverse of the piece of the
tangent function which passes through the origin. The vertical asymptotes bounding this
piece become horizontal asymptotes when the function is inverted.

Here are the equation and graph of the logistic function:

−10 −5 5 10

0.5

1

x

y

Figure 3.7: Graph of the logistic function, y = 1
1+e−x

For large magnitude negative values of x, the exponential term in the denominator be-
comes a very large positive value. The fraction thus becomes a positive number very close
to zero. For large magnitude positive values of x, that exponential term becomes a very
small positive number. Adding it to 1 yields a denominator just barely greater than 1.
Dividing 1 by this number therefore yields a function value just barely less than 1. So,
the logistic function yields values between 0 and 1, though never equaling either of these
values exactly. It is precisely this characteristic which makes the logistic function so useful.
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Exercise 3 Limits Practice 3

.Using limit notation, state the limits as x
approaches negative and positive infin-
ity for the inverse tangent and logistic
functions given above.

Answer on Page 45

Working Space

As seen above, the limit of a function from the left may be different from the limit of the
function from the right. Additionally, the actual value of the function may be different
from the limit. Consider the piecewise function h(x):

h(x) =


−x2 + 3, if x < 0

2, x = 0

−x+ 3, if x > 0

−3 −2 −1 1 2 3

−6

−4

−2

2

x

h(x)

Figure 3.8: Graph of the piecewise function, h(x)



21

From examining the graph, we see that

lim
x→0−

h(x) = lim
x→0+

h(x) = 3

However, h(0) = 2 6= 3. So, does this limit exist? It does! The limit of a function describes
the behavior of the function around a particular value, not the value of the function itself.
In order for a limit to exist, the limits from the left and right must be equal to each other,
but not necessarily the actual value of the function.

Use the graph of h(x) above and the graphs of f(x) and g(x) below to complete the fol-
lowing exercise.

−3 −2 −1 1 2 3

−5

5

10

x

y g(x)
f(x)

Figure 3.9: Piecewise functions f(x) and g(x)
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Exercise 4 Limits Practice 4

.Determine the limit from the left and
the right for each function at the given
value(s). State the limit at that value, if
it exists.

1. h(x), x = −1, 0, 1

2. f(x), x = −1, 0, 2

3. g(x), x = −2, 0, 1, 2

Answer on Page 45

Working Space

3.1 Continuity

A note about continuity:

In order to be able to talk more about limits and know when we can apply certain rules
and theorems, we first must discuss continuity. A function is continuous if there are no
”jumps” or ”gaps” in the graph of the function. For example, the function f(x) = x2

is continuous for all real values of x. On the other hand, the function g(x) = tan(x)
has many discontinuities, including at x = π

2 . Let’s examine the graph of each of these
functions:

If you wanted, you could trace your finger along the graph of f(x) from x = −3 to x = 3

without ever picking up your finger. This means the function is continuous in the domain
from −3 ≤ x ≤ 3. In this case, the domain of continuity includes the end points (x = 3 and
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−3 −2 −1 1 2 3

2

4

6

8

x

f(x)

Figure 3.10: Graph of f(x) = x2

x = −3). This is called a closed interval. In other cases, the function will be continuous
right up to, but not including, the endpoints, as with the domains of continuity for our
other example, g(x) = tan x. This is called an open interval. Let’s learn more about
intervals of continuity by examining g(x) = tan x.

−2π − 3
2
π −π − 1

2
π + 1

2
π +π + 3

2
π +2π

−4

−3

−2

−1

1

2

3

4

x

g(x)

Figure 3.11: Graph of g(x) = tan x

As you can see, if you trace your finger along the graph of the function starting at x = 0,
you can continue without lifting your finger to x = π

2 . As you approach x = π
2 from

the left, the value of g(x) approaches ∞. In order to continue tracing the function PAST
x = π

2 , you have to lift your finger and bring it down to −∞. The function then continues
continuously again until x = 3π

2 .

In the case of g(x) = tan x, the function is continuous on open intervals, including the open
interval π

2 < x < 3π
2 .

There is a shorter way to represent open and closed domain intervals. We can represent
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that f(x) = x2 is continuous on the closed interval −3 ≤ x ≤ 3 in the following way:

x ∈ [3,−3]

This reads as ”x contained in the domain -3 to 3, inclusive”. That is, all the values from
-3 to 3, including the endpoints. The inclusion of the endpoints is implied by the use of
brackets. For open intervals, we use parentheses to communicate that the interval goes up
to, but does not include, the endpoints. For g(x) = tan x, we can use parentheses:

x ∈
(
−3π

2
,
−π

2

)

because the g(x) = tan x is not continuous at x = −3π
2 or at x = −π

2 .

Formally, a function f(x) is continuous at x = a if limx→a f(x) exists and limx→a f(x) = f(a).
In other words, the limit is equal to the actual value of the function. Re-examine the graph
of h(x). We have already seen that limx→0 h(x) exists and is equal to 3. However, h(0) =
2 6= limx→0 h(x). So h(x) is not continuous at x = 0. Because−x2+3 is evaluable all the way
to−∞ and−x+3 is evaluable all the way to∞, the function h(x) is continuous everywhere
except x = 0. We can represent this mathematically by saying h(x) is continuous on the
domain x ∈ (−∞, 0) ∪ (0,∞). We use parentheses for ±∞ because we can never actually
reach ∞. Additionally, the function is continuous up to, but not including 0, and the use
of parentheses excludes x = 0 from the domain of continuity.

3.1.1 Continuity Practice
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Exercise 5

.[This problem was originally presented
as a calculator-allowed, multiple- choice
question on the 2012 AP Calculus BC
exam.] Suppose a function f is contin-
uous at x = 3. Classify the following
statements as always true, sometimes true,
or never true. Explain your answers.

1. f(3) < limx→3 f(x)

2. lim x → 3+f(x) 6= limx→3− f(x)

3. f(3) = limx→3+ f(x) = limx→3− f(x)

4. The derivative of f at x = 3 exists.

5. The derivative of f is positive for
x < 3 and negative for x > 3.

Answer on Page 46

Working Space

Exercise 6 Limits Practice 5

.State the location of discontinuities (if
any) and explain why the function is dis-
continuous at that location:

1. f(x) = 3x2−8x−3
x−3

2. f(x) =

{
2
x4
, if x < 6= 0

2, if x = 0

3. f(x) =

{
3x2−8x−3

x−3 , if x 6= 3

1, if , x = 3

Answer on Page 46

Working Space
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Exercise 7

.The graph of a function, h(x), is shown.
Classify each of the following statements
as true or false and explain your answer.

1 2 3 4 5 6

2

4

6

x

y

1. limx→2 h(x) exists

2. limx→3 h(x) does not exist

3. limx→4 h(x) exists

4. h(x) is continuous at x = 5

5. h(x) is not continuous at x = 4

6. limx→2 h(x) = h(2)

Answer on Page 47

Working Space

3.2 Limits Rules

There are some mathematical properties of limits which allow us to determine the limit
of complex functions without seeing a graph or using a calculator to generate a table.

The following laws are true given that c is a constant, limx→a f(x) exists, and limx→a g(x)
exists.

1. Sum Law limx→a [f(x) + g(x)] = limx→af(x) + limx→ag(x)
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2. Difference Law limx→a [f(x) − g(x)] = limx→af(x) − limx→a g(x)

3. Constant Multiple Law limx→a [cf(x)] = c · limx→a f(x)

4. Product Law limx→a [f(x)g(x)] = limx→af(x) · limx→a g(x)

5. Quotient Law limx→a
f(x)
g(x) =

limx→a f(x)
limx→a g(x) given that limx→a g(x) 6= 0

These laws are fairly obvious — the limit of the sum of two functions is equal to the sum
of the limits of each function individually. The only tricky one is the last: The limit of
the quotient of two functions is equal to the quotient of the limits if and only if the limit
of the function in the denominator does not equal zero. This makes sense, as we know
dividing by zero yields an undefined result.

Let’s practice applying these laws to evaluate the limits of the functions f(x), shown in
blue below, and g(x), shown in red below:

f(x) =

{
−x2 + 3, if x ≤ 0

−x, if x > 0

g(x) =

{
x2 + 1, if x < 1

(x− 2)2, if x ≥ 1

−3 −2 −1 1 2 3

−5

5

10

x

y g(x)
f(x)

Figure 3.12: Graphs of the piecewise functions f(x) and g(x)

We can use these laws to evaluate limits involving f(x) and g(x) (shown on the graph
above). Here are some examples: Use the graphs of f(x) and g(x) given above to evaluate
each limit, if it exists. If the limit does not exist, explain why. Two examples are given
first:

Example 1: Evaluate limx→0 f(x) · g(x)
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Solution 1: From the Product Law, we know that:

lim
x→0

f(x) · g(x) = lim
x→0

f(x) · lim
x→0

g(x)

Looking at the graph, we can see that

lim
x→0

g(x) = 1

and there is a discontinuity in f(x) at x = 0. Therefore,

lim
x→0

f(x) = undef

Substituting this, we get:

lim
x→0

f(x) · lim
x→0

g(x) = undef · 1 = undef

Therefore, the limit does not exist.

Example 2: Evaluate limx→2 f(x) − g(x)

Solution 2: Applying the Difference Law, we see that:

lim
x→2

[f(x) − g(x)] = lim
x→2

f(x) − lim
x→2

g(x)

Examining the graph, we see that

lim
x→2

f(x) = −2

and
lim
x→2

g(x) = 0

Substituting these values, we get:

lim
x→2

f(x) − g(x) = −2− 0 = −2
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Exercise 8 Limits Practice 6

.

1. limx→−3
f(x)
g(x)

2. limx→2 [f(x) + 5g(x)]

3. limx→−1
3g(x)
f(x)

4. limx→0 f(x) · 5g(x)

5. limx→−1 f(x) − 3g(x)

Answer on Page 47

Working Space

Recall that exponents represent repeated multiplication. Therefore, if we apply the Prod-
uct Law multiple times, we obtain the Power Law for limits:

6. Power Law limx→∞ [f(x)]n = [limx→∞ f(x)]n where n is a positive integer

There are two special limits that will be useful to us and are intuitively obvious, but we
won’t formally prove here.

7. limx→a c = c

8. limx→a x = a

Combining Law 8 with the Power Law, we find that:

9. limx→a x
n = an

And similarly, for square roots:



30 Chapter 3. LIMITS

10. limx→a
n
√
x = n

√
a (if n is even, we assume a > 0)

Direct substitution property: If f is a polynomial or rational function and a is in the
domain for f, then

lim
x→a

f(x) = f(a)

Often, rational functions can be simplified. In an above example, we computed the limit
by simplifying f(x) = 3x2−8x−3

x−3 to the simpler g(x) = 3x+1. This is a valid strategy because
3x2−8x−3

x−3 = 3x + 1 when x 6= 3. Remember: a limit describes how a function behaves as
it approaches a, not its value/behavior when x actually equals a. This reveals the following
useful rule:

If f(x) = g(x) when x 6= a, then lim
x→a

f(x) = lim
x→a

g(x), provided the limit exists.

3.3 Squeeze Theorem

The Squeeze Theorem states that if f(x) ≤ g(x) ≤ h(x) when x is near a (except at a) and

lim
x→a

f(x) = lim
x→a

h(x) = L

, then
lim
x→a

g(x) = L

In other words, if g(x) is between f(x) and h(x) near a, and f and h have the same limit,
L, then the limit of g must also be L.

Example: Let’s examine the graph of g(x) = x2 sin 1
x and determine limx→0 g(x):

g(x) = x2 sin 1
x

Figure 3.13: Graph of g(x) = x2 sin 1
x
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Solution: Because sin 1
x is undefined at x = 0, we cannot compute the limit directly.

However, from examining the graph, we can guess that limx→0 g(x) = 0. Feel free to
confirm this with your calculator. We need to choose two functions: one that is larger
than g(x) near x = 0 and one that is smaller. Since | sin 1

x | ≤ 1 (when x 6= 0), then

|x2 sin 1

x
| ≤ x2

and
−x2 ≤ x2 sin 1

x
≤ x2

Let’s confirm this by plotting f(x) = −x2, g(x), and h(x) = x2 on the same graph:

g(x) = x2 sin 1
x

h(x) = x2

f(x) = −x2

Figure 3.14: Squeeze Theorem example

As you can see, when x is near 0, f(x) ≤ g(x) ≤ h(x). Because f(x) and h(x) are both
polynomials, their limits are straightforward:

lim
x→0

−x2 = 0 and lim
x→0

x2 = 0

Then, by the Squeeze Theorem, we can say that:

lim
x→0

x2 sin 1

x
= 0

3.3.1 Squeeze Theorem Practice
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Exercise 9 Squeeze Theorem 1

.Use the Squeeze Theorem to show that
limx→0

√
x3 + x2 cos 1

x = 0. Illustrate by
graphing the functions you define as f,
g, and h on the same plot.

Answer on Page 49

Working Space
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Exercise 10 Squeeze Theorem 2

.If 2x + 3 ≤ f(x) ≤ x2 − 2x + 7 for x ≥ 0,
find limx→2 f(x)

Answer on Page 49

Working Space

Exercise 11 Squeeze Theorem 3

.Prove that limx→0+
√
xesin

π
x = 0

Answer on Page 50

Working Space

3.4 Intermediate Value Theorem

When considering functions that are continuous on a closed interval, the Intermediate
Value Theorem can help us: Given a function, f(x), that is continuous on the closed
interval [a, b] and f(a) 6= f(b), there is at least one number c such that f(c) = N, where N

is any number between f(a) and f(b). The theorem is illustrated in figures 3.15 and 3.16:
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a bc

f(a)

f(b)

N

x

f(
x
)

Figure 3.15: An example where one solution satisfies the Intermediate Value Theorem

a bc1 c2 c3

f(a)

f(b)

N

x

f(
x
)

Figure 3.16: An example where more than one solution satisfies the Intermediate Value
Theorem
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Logically, we can think of the IVT this way: If a function is continuous on a closed interval,
there are no gaps or breaks. If there are no gaps or breaks, then the function must pass
through the line y = N, since it cannot jump over the line. Your graphing calculator uses
IVT to find roots of functions:

Example: Show that there is at least one root of the equation 2x3−6x2+3x−1 = 0 between
x = 2 and x = 3.

Solution: For IVT to apply, we must first check that the function is continuous on the
closed interval x ∈ [2, 3]. We define f(x) = 2x2 − 6x2 + 3x − 1, which is continuous
everywhere, because it is a polynomial function. For more complex functions, always be sure
to check the endpoints of an interval, since IVT only applies on closed intervals of continuity. We
will take a = 2, b = 3, and N = 0. We find the values of f(x) at the endpoints:

f(2) = 2(2)3 − 6(2)2 + 3(2) − 1 = 16− 24+ 6− 1 = −3

f(3) = 2(3)3 − 6(3)2 + 3(3) − 1 = 54− 54+ 9− 1 = 8

Therefore, f(2) < 0 < f(3) and according to IVT, there must exist some c such that f(c) = 0

and there is a root to the equation in the interval x ∈ (2, 3).
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Exercise 12 Intermediate Value Theorem Practice

.Use the IVT to show there is a solution
the given equation on the stated interval:

1. 2x4 + x− 12 = 0 , (1, 2)

2. ln(x) = 3x− 4
√
x , (2, 3)

3. 2 sin x = 3x2 − 2x , (1, 2)

Answer on Page 50

Working Space
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Rational Functions

We have discussed addition, subtraction, and multiplication of polynomials. What about
division?

A quotient of polynomials is called a rational expression. When the polynomials are
factored and the stars align, we can simplify the rational expression to a single polynomial,
just like we might reduce a fraction to lowest terms.

Example

(x+ 1)(x+ 5)

x+ 5
= (x+ 1) ∗ x+ 5

x+ 5

= x+ 1

(4.1)

What if the polynomials are not factored? Factor them first.

Example
x2 + 6x+ 5

x+ 5
=

(x+ 1)(x+ 5)

x+ 5

and simplify as in the previous example.

Now, let us consider a rational expression which can be simplified to a single polynomial
— but in the denominator.

Example

x+ 5

x2 + 6x+ 5
=

x+ 5

(x+ 1)(x+ 5)

=
1

x+ 1
∗ x+ 5

x+ 5

=
1

x+ 1

(4.2)

Consider this expression as a function: f(x) = 1
x+1 . As you might have guessed, this is

called a rational function. We did not bother looking at the result of the previous example
as a function, because we already know that function type: it is a line with slope 1 and
y-intercept 1. However, this rational function is another animal entirely. Let us examine
our first rational function with a familiar concept: the y-intercept.

37
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y-intercept: f(0) = 1
0+1 = 1

1 = 1. The graph contains the point (0, 1).

Does f have an x-intercept? That would be an x-value where f(x) = 0. But a fraction equals
0 only when its numerator equals 0; since the numerator of this expression is always 1, f
has no x-intercept.

Knowing the y-intercept, and that there is no x-intercept, is a comforting start. But things
get weird when we consider a concept that has previously seemed quite simple: domain.
Recall that the domain of a function is the set of all values which can be used as inputs. In
this case, the domain includes all real numbers, with one exception. The number −1 is not
a valid input because f(−1) = 1

−1+1 = 1
0 , which is undefined. So, we say that the domain

is all real numbers except −1. This means the graph contains a point corresponding to
every x-value except −1.

There is no point at x = −1, but there is a point at every other x-value, such as, for
example, −1.1, or −0.99999. So, what is happening near x = −1?

x -1.1 -1.01 -1.001 -0.999 -0.99 -0.9
f(x) -10 -100 -1000 1000 100 10

The function is going haywire. As we choose x-values closer and closer to−1, the resulting
function values are larger and larger in magnitude. Also, they are negative on one side,
but positive on the other. So, how does a graph go from y-values of −10, to −100, to
−1000, all in a space of less than 0.1 on the x-axis? Then, from there, suddenly to big
positive numbers on the other side of x = −1? All without ever crossing the x-axis (since
there is no x-intercept)? Let’s look at the graph.

−4 −2 2 4

−6

−4

−2

2

4

6

x

f(x)

Figure 4.1: Graph of f(x) = 1
x+1

We can see the y-intercept we found above. We can also see that the graph has no x-
intercept, as expected. The phenomenon occurring at x = −1 is called a vertical asymptote.
One other interesting feature of this graph is how it hugs the x-axis toward the left and
right edges of the window. This makes the line y = 0 (the x-axis) a horizontal asymptote
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for this function. We can see why this is happening numerically by considering what
happens for x-values far from 0. In this function, the result is a fraction with a numerator
of 1 and a denominator that is large in size: a fraction that is close to 0.

x -1000 -100 -10 10 100 1000
f(x) -0.001 -0.01 -0.1 0.1 0.01 0.001

Let’s examine another rational function. Begin by factoring to see if the function can be
simplified.

g(x) =
x2 − 3x+ 2

x2 − 4x+ 3
=

(x− 1)(x− 2)

(x− 1)(x− 3)

Consider the domain of g before continuing. Which values of x are valid inputs? Since
substituting x = 1 or x = 3 would result in division by 0, these are not valid inputs. The
domain of g is all real numbers except 1 and 3.

Now, for any x-value except 1, x−1
x−1 = 1. This means that, for all x-values but 1, we can

cancel those factors, leaving g(x) = x−2
x−3 . (We will talk more about what is happening at

x = 1 in a moment.)

This function has both x- and y-intercepts: y-intercept: g(0) = 0−2
0−3 = 2

3 . The graph
contains the point (0, 23). x-intercept: g(x) = 0 where the numerator equals 0 and the
denominator does not equal 0. Since x − 2 = 0 when x = 2, the x-intercept is 2 and the
graph contains the point (2, 0).

The graph of g has a vertical asymptote at any x-value where substitution would result in
dividing a nonzero number by zero. Thus, g has a vertical asymptote at x = 3.

Does g have a horizontal asymptote? Let us see what happens whenwe substitute x-values
far from 0.

x -1000 -100 -10 10 100 1000
g(x) 0.999 0.990 0.923 1.143 1.010 1.001

As we move further away from the y-axis, the y-values become closer to 1. The horizontal
asymptote describes the end behavior of the function, or what the graph looks like far
from the y-axis. In this case, if we ignore the portion close to the y-axis, the graph begins
to look like the line y = 1, making this the horizontal asymptote of g.

So, what is happening at x = 1? The value is not in the domain of the function, but there
is no vertical asymptote there. That is because substituting any other value for x, even
values very close to 1, into (x−1)(x−2)

(x−1)(x−3) gives the exact same number as substituting into x−2
x−3 .

So, there is a hole in the graph at x = 1, but nothing strange is happening on either side
of 1. (Depending on the graphing software, the hole may not be visible.)
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−4 −2 2 4

−6

−4

−2

2

4

6

x

g(x)

Figure 4.2: Graph of g(x) = x2−3x+2
x2−4x+3

Exercise 13 Rational Functions Practice 1

.Determine the x- and y-intercepts and
horizontal and vertical asymptotes of the
rational function:

1. 2x+5
x+4

Answer on Page 51

Working Space
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Exercise 14

.[This question was originally presented
in the no-calculator section of the 2012
AP Calculus BC exam.] The line y = 5

is a horizontal asymptote of which of the
following functions? Explain.
A. y = sin 5x

x

B. y = 5x

C. y = 1
x−5

D. y = 5x
1−x

E. y = 20x2−x
1+4x2

Answer on Page 51

Working Space

In those examples, common factors cancel, leaving one polynomial. Of course, there is
no guarantee that any two polynomials will have common factors, or even be factorable
at all. Now, we consider an example that cannot be simplified. We will focus on just the
asymptotes here.

h(x) =
x2

x− 1

We see that the x-value 1 gives division of a non-zero number by zero, giving a vertical
asymptote at x = 1. How about a horizontal asymptote? We examine values of h for
values of x far from 0.

x -1000 -100 -10 10 100 1000
h(x) -999 -99 -9 11 101 1001

Rather than seeing function values leveling off as in the previous examples, we see func-
tion values that grow in size along with x. The function h has no horizontal asymptote.
Let’s examine the graph:

This function exhibits a different type of end behavior: that of a line with slope 1. To see
that, cover up the portion of the graph near the y-axis and focus on the left and right.
The rather dull and time-consuming technique of polynomial long division can be used to
rewrite the function as a quotient and a remainder. We encourage you to watch the Khan
Academy video on the topic, but for now, let us instead use our knowledge of factoring
techniques and a clever little trick.
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−4 −2 2 4
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8

x

h(x)

Figure 4.3: Graph of h(x) = x2

x−1

h(x) =
x2

x− 1

=
x2 − 1+ 1

x− 1

=
x2 − 1

x− 1
+

1

x− 1

=
(x− 1)(x+ 1)

x− 1
+

1

x− 1

= x+ 1+
1

x− 1

(4.3)

We obtain a quotient of x+ 1 and a remainder of 1. It is the quotient that determines the
end behavior of the graph. Why? Substituting x-values far from zero makes the remainder
term very small, since it becomes a fraction with a large denominator but a numerator of
only 1. So for x-values far from zero, the y-value is x plus 1 plus a very small number (so
small that we can justifiably ignore it). This means that far from the y-axis, the function
acts like the quotient: the line y = x+1. We call this line an oblique asymptote. See below
how the graph of h(x) hugs that line.
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−4 −2 2 4
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y

Figure 4.4: Graph of h(x) = x2

x−1 and its oblique asymptote y = x+ 1

Exercise 15 Rational Functions Practice 2

.Factor and simplify the rational function,
then determine any holes and vertical
and oblique asymptotes of the rational
function.

1. x3+2x2

x2+x

Answer on Page 51

Working Space

We have seen lines act as end behaviors. Are there other possibilities? Sure! Here is an
example with parabolic end behavior.

k(x) =
x3

x− 2

We use our add-subtract trick to reveal the quotient, which describes the end behavior.
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h(x) =
x3

x− 2

=
x3 − 8+ 8

x− 2

=
x3 − 8

x− 2
+

8

x− 2

=
(x− 2)(x2 + 2x+ 4)

x− 2
+

8

x− 2

= x2 + 2x+ 4+
8

x− 2

(4.4)

The quotient, x2+2x+4, should describe the end behavior. We confirm by graphing both
k and the quotient - the parabolic asymptote.

−4 −2 2 4 6

−20

20

40

x

y

Figure 4.5: Graph of k(x) = x3

x−2 and its parabolic asymptote y = x2 + 2x+ 4



Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 15)

lim
x→−6−

p(x) = −∞, lim
x→−6+

p(x) = ∞
lim

x→−5−
p(x) = lim

x→−5+
p(x) = lim

x→−5
p(x) = 1

lim
x→−3−

p(x) = lim
x→−3+

p(x) = lim
x→−3

p(x) =
1

3

lim
x→∞p(x) = 0 called simply a limit, although it is a left-hand limit

Answer to Exercise 2 (on page 18)

lim
x→−∞ 3x + 1 = 1; lim

x→4+
log2(x− 4) = −∞; lim

x→∞ 21−x = 0; lim
x→0−

log10(−2x) = −∞

Answer to Exercise 3 (on page 20)

limx→−∞ tan−1x = −π
2 , limx→∞ tan−1x = π

2 ; limx→−∞ 1
1+e−x = 0, limx→∞ 1

1+e−x = 1

Answer to Exercise 4 (on page 22)

1. limx→−1− h(x) = 2 and limx→−1+ h(x) = 2, therefore the limit exists and limx→−1 h(x) =
2

limx→0− h(x) = 3 and limx→0+ h(x) = 3, therefore the limit exists and limx→0 h(x) = 3

limx→1− h(x) = 2 and limx→1+ h(x) = 2, therefore the limit exists and limx→1 h(x) = 2

2. limx→−1− f(x) = 2 and limx→−1+ f(x) = 2, therefore the limit exists and limx→−1 f(x) =
2.

45
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limx→0− f(x) = 3 and limx→0+ f(x) = 0, and because limx→0− f(x) 6= limx→0+ f(x), the
limit does not exist.
limx→2− f(x) = −2 and limx→2+ f(x) = −2, therefore the limit exists and limx→2 f(x) =
−2.

3. limx→−2− g(x) = −1 and limx→−2+ g(x) = −1, therefore the limit exists and limx→−2 g(x) =
−1.
limx→0− g(x) = 1 and limx→0+ g(x) = 1, therefore the limit exists and limx→0 g(x) = 1

limx→1− g(x) = 2 and limx→0+ g(x) = 1, and because limx→1− g(x) = 2 6= limx→0+ g(x),
the limit does not exist.
limx→2− g(x) = 0 and limx→2+ g(x) = 0, therefore the limit exists and limx→2 g(x) = 0

Answer to Exercise 5 (on page 25)

1. Never true. If a function is continuous at a, then f(a) = limx→a f(x).

2. Never true. If a function is continuous at a, then lim x → a+f(x) = lim x → a−f(x)

3. Always true. This is the definition of continuity.

4. Sometimes true. The derivative of f at x = 3 exists for f(x) = x2 but not for f(x) =
|x− 3|.

5. Sometimes true. This statement is true for f(x) = −(x− 3)2 but not for f(x) = 4x.

Answer to Exercise 6 (on page 25)

1. f(x) is not defined at x = 3. Therefore, it is also discontinuous at x = 3. As we learn
about the continuity of polynomials, we will see why f(x) is continuous everywhere
else.

2. Here, f(0) is defined, so we need to check if limx→0 f(x) = f(0). The left and right
limits as x approaches 0 are the same (∞), so the limit exists. However, f(0) = 1 6=
limx→0 f(x). Therefore, the function is discontinuous at x = 0.

3. In this function, f(3) is defined, so we need to check if the limit equals the function
value. The limit of f(x) as x approaches 3 is:

lim
x→3

3x2 − 8x− 3

x− 3
= lim

x→3

(3x+ 1)(x− 3)

x− 3
= lim

x→3
3x+ 1 = 10

So the limit exists, but lim x → 3f(x) 6= f(3), and we see that the function is discon-
tinuous at x = 3.
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Answer to Exercise 8 (on page 29)

1. True, h(x) approaches 2 from the left and right, therefore the limit exists

2. False, h(x) approaches 5 from the left and right, therefore the limit exists

3. False, h(x) approaches 2 from the left and 4 from the right, therefore the limit does
not exist

4. True, limx→5 h(x) = h(5), therefore h(x) is continuous at x = 5

5. True, limx→4 h(x) does not exist, therefore h(x) is discontinuous at x = 4

6. False, h(2) = 1 6= 2 = limx→2 h(x)

Answer to Exercise 8 (on page 29)

1. From the quotient law, we know that:

lim
x→3

f(x)

g(x)
=

limx→3 f(x)

limx→3 g(x)

From the graph, we see that:
lim
x→3

f(x) = −3

and that:
lim
x→3

g(x) = 1

Substituting these values, we get:

lim
x→3

f(x)

g(x)
=

−3

1
= −3

2. From the Sum Law, we know that:

lim
x→2

[f(x) + 5g(x)] = lim
x→2

f(x) + lim
x→2

5g(x)

and applying the Constant Multiple Law, we see that:

lim
x→2

[f(x) + 5g(x)] = lim
x→2

f(x) + 5 lim
x→2

g(x)
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Examining the graph of f(x) and g(x), we can determine that

lim
x→2

f(x) = −2

and
lim
x/to2

g(x) = 0

Substituting these values, we get:

lim
x→2

[f(x) + 5g(x)] = −2+ 5 · 0 = −2

3. From the quotient law, we see that:

lim
x→−1

3g(x)

f(x)
=

limx→−1 3g(x)

limx→−1 f(x)

Applying the Constant Multiple Law, we get:

lim
x→−1

[
3g(x)

f(x)

]
=

3 limx→−1 g(x)

limx→−1 f(x)

From the graph, we see that:
lim
x→−1

f(x) = 2

and
lim
x→−1

g(x) = 2

Substituting, we get:

lim
x→−1

[
3g(x)

f(x)

]
=

3 · 2
2

= 3

4. Applying the Product and Constant Multiple Laws, we get:

lim
x→0

[f(x) · 5g(x)] = lim
x→0

f(x) · 5 · lim
x→0

g(x)

Examining the graphs, we see that limx→0 f(x) does not exist and limx→0 g(x) = 1.
Because limx→0 f(x) does not exist, limx→0 f(x) · 5 · limx→0 g(x) also does not exist.
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5. Applying the Difference and Constant Multiple Laws, we see that:

lim
x→−1

[f(x) − 3g(x)] = lim
x→−1

f(x) − 3 · lim
x→−1

g(x)

Examining the graphs, we see that:

lim
x→−1

f(x) = 2

and
lim
x→−1

g(x) = 2

Substituting, we get that:

lim
x→−1

[f(x) − 3g(x)] = 2− 3 · 2 = 2− 6 = −4

Answer to Exercise 9 (on page 32)

Let f(x) = −
√
x3 + x2 and h(x) =

√
x3 + x2. Near 0, f(x) ≤

√
x3 + x2 cos 1

x ≤ h(x). Addi-
tionally, limx→0 f(x) = limx→0 h(x) = 0. Therefore, by the Squeeze Theorem, we can state
that limx→0

√
x3 + x2 cos 1

x = 0. Plotting all three functions, we can confirm our answer:

g(x) =
√
x3 + x2 cos 1

x

f(x) =
√
x3 + x2

h(x) = −
√
x3 + x2

Answer to Exercise 10 (on page 33)

The question tells us that the function in question, f(x), is between two other functions.
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limx→2 2x + 3 = 2(2) + 3 = 7 and limx→2 x
2 − 2x + 7 = 22 − 2(2) + 7 = 7. Since the limits

are equal, by Squeeze Theorem we can also know that limx→2 f(x) = 7.

Answer to Exercise 11 (on page 33)

Note that we can only evaluate the limit from the right, as the domain for this function is
x ≥ 0. Since the range of the sine function is [−1, 1], we can state that

−1 ≤ sin π

x
≤ 1

and therefore
1

e
≤ esin

π
x ≤ e

. Because we assume the positive root, it is also true that
√
x

e
≤

√
xesin

π
x ≤

√
xe

. Taking the limits of the border functions, we see that

lim
x→0+

√
x

e
= lim

x→0+

√
xe = 0

Therefore,
lim
x→0+

√
xesin

π
x = 0

Answer to Exercise 12 (on page 36)

1. define f(x) = 2x4 + x− 12, a = 1, b = 2, and N = 0. Calculate f(a) and f(b):

f(1) = −9 and f(2) = 22

Since f(x) is a polynomial, it is continuous on the interval x ∈ [1, 2] and we see that
f(a) < 0 < f(b). Therefore, there exists some c ∈ [1, 2] such that f(c) = 0.

2. First, we can rearrange the equation we are considering and define f(x) = ln x −
3x + 4

√
x, and realize we are looking for values where f(x) = 0. Both ln x and

√
x

are only continuous for x > 0. The interval we are interested in, x ∈ [2, 3], is in the
domain of continuity for both ln x and

√
x. Defining a = 2, b = 3, and N = 0, we

find that f(a) = 0.35 > N > −0.973 = f(b). Since N ∈ [f(b), f(a)], there must exist
some c such that f(c) = N = 0 and there is a solution to the equation ln x = 3x−4

√
x

on the interval x ∈ (2, 3).
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3. Similar to above, define f(x) = 2 sin x− 3x2 + 2x, a = 1, b = 2, and N = 0. Calculate
that f(a) = 0.683 and f(b) = −6.181. Since f(x) is continuous on the interval x ∈ [1, 2]
and f(b) < N < f(a), there exists some c ∈ (1, 2) such that f(c) = 0. Therefore, there
is a solution to sin x = 3x2 − 2x on the interval x ∈ (1, 2).

Answer to Exercise 13 (on page 40)

x-intercept: (−5/2, 0); y-intercept: (0, 5/4); horizontal asymptote: y = 2; vertical asymp-
tote: x = −4

Answer to Exercise 15 (on page 43)

The correct answer is E. To explain, we examine the behavior of each function as x → ∞.
A. limx→∞ sin 5x

x = ±∞ 6= 5

B. limx→∞ 5x = ∞ 6= 5

C. limx→∞ 1
x−5 = 0 6= 5 (this function does have a vertical asymptote at x = 5).

D. limx→∞ 5x
1−x = 5

−1 = −5 6= 5 (this function has a horizontal asymptote at x = −5).
E. limx→∞ 20x2−x

1+4x2
= 20

4 = 5.

Answer to Exercise 15 (on page 43)

Factored form: x2(x+2)
x(x+1) ; hole: (0, 0); vertical asymptote: x = −1; oblique asymptote: y =

x+ 1
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