\iiﬁ

// ’5// \
//////////

CONTENTS

1 Differentiating Polynomials
1.1 Second order and higher derivatives
2 Python Classes
2.1 Object-Oriented Programming Introduction
2.2 Parent classes
2.3 Making a Polynomial class
3 Common Polynomial Products
3.1 Difference of squares
3.2 Powers of binomials
4 Factoring Polynomials
41 How to factor polynomials
5 Practice with Polynomials
A Answers to Exercises
Index

931

© © NN

15
15
17

21
21

25

27

31

CHAPTER |

Differentiating Polynomials

If you had a function that gave you the height of an object, it would be handy to be able to
figure out a function that gave you the velocity at which it was rising or falling. The process
of converting the position function into a velocity function is known as differentiation or
finding the derivative. There are a bunch of rules for finding a derivative, but differentiating
polynomials only requires three:

e The derivative of a sum is equal to the sum of the derivatives.

e The derivative of a constant is zero.

e The derivative of a nonconstant monomial at® (a and b are constant numbers, t is
time) is abt®!. This is referred to as the power rule.

Power Rule

For f(x) = ax™, the derivative is f'(x) = anx™ .

So, for example, if we tell you that the height (position) in meters of a quadcopter at
second t is given by 2t3 — 5t? 4+ 9t + 200. You could tell us that its vertical velocity is
6t2 — 10t + 9.

We indicate the derivative of a function with an apostrophe (read as “prime”) between
the name of the function and the variable. For example, the derivative of h(t) is h/(t)
(which is read out loud as “h prime of t”).

4 Chapter 1. DIFFERENTIATING POLYNOMIALS

Exercise 1 Differentiation of polynomials

)) _) —— Working Space
Differentiate the following polynomials. ‘

1. f(t) =23 — 3t — 4t

2. g(t) =2t734

3.Fr) =3

4. Huw) = Bu—1)(u+2)

; Answer on Page 27 4

Notice that the degree of the derivative is one less than the degree of the original polyno-
mial. (Unless, of course, the degree of the original is already zero.)

Now, if you know that a position is given by a polynomial, you can differentiate it to find
the object’s velocity at any time.

The same trick works for acceleration: Let’s say you know a function that gives an object’s
velocity. To find its acceleration at any time, you take the derivative of the velocity function
(the second derivative).

Section 1.1 SECOND ORDER AND HIGHER DERIVATIVES 5

Exercise 2 Differentiation of polynomials in Python
, _ _ Working Space
Write a function that returns the deriva- ‘

tive of a polynomial in poly.py. It should
look like this:

def derivative_of_polynomial (pn):
...Your code here...

When you test it in test.py, it should
look like this:

3x**3 + 2x + 5

pl = [5.0, 2.0, 0.0, 3.0]

dl = poly.derivative_of_polynomial (p1)

dl should be 9x**2 + 2

print("Derivative of", poly.polynomial_to_string(pl),"is", poly.polynomial_to_string(dl))

Check constant polynomials

p2 = [-9.0]

d2 = poly.derivative_of_polynomial (p2)

d2 should be 0.0

print("Derivative of", poly.polynomial_to_string(p2),"is", poly.polynomial_to_string(d2))

; Answer on Page 27 4

1.1 Second order and higher derivatives

As seen from the example, with height, velocity, and acceleration, you can take the deriva-
tive of a derivative, which is called the second derivative and is indicated with two marks,

like so:
d

dx
When you have the height function (or position function, in the case of horizontal motion)
of an object, the first derivative describes the velocity of the object, and the second deriva-
tive describes the acceleration. Suppose the motion of a particle is given by s(t) = t> —5t,
where s is in meters and t is in seconds. What is the acceleration when the velocity is 0?
First, we find the velocity function, s’(t), and the acceleration function, s”(t):

f'(x) = f"(x)

s’'(t) =32 =5

6 Chapter 1. DIFFERENTIATING POLYNOMIALS

s”(t) =6t

To find where the velocity is 0, set s’(t) = 0:

3tP—5=

Wl G,

5
t:\/g%LZ?s

(we ignore the other solution, t = —\/g because it is usual for time to start at zero.)

Next, we use t &~ 1.29s in the acceleration function, s”(t):

5 5 m
" 2y 7752
s 3) 6\/; 77532

For higher order derivatives, you just keep taking the derivative! So a third derivative is
found by taking the derivative of the second derivative, and so on.

Exercise 3 Using Derivatives to Describe Motion

- . . Working Space
The position of a particle is described by '— —‘

the equation s(t) = t* =23+t —t, where
s is in meters and t is in seconds.

(a) Find the velocity and acceleration as
functions of t.

(b) Find the velocity after 1.5 s.
(c) Find the acceleration after 1.5 s.

(d) Is the object speeding up or slowing
down at t = 1.5? How do you know?

; Answer on Page 28 4

CHAPTER 2

Python Classes

FIXME integrate this better with polynomials, but we need to cover the following

2.1 Object-Oriented Programming Introduction

Imagine you want to implement multiple dogs in python. It gets a bit complicated to do
the following:

doglname = "Teddy"
doglage = 6
doglsound = "woof"
dog2name = "Fluffers"
doglage = 2
dog2sound = "bark"
dog3name = "Bella"
dog3age = 3
dog3sound = "grr"

print (f"{doglname} is {doglage} and says {doglsound}!")
print (f"{dog2name} is {dog2age} and says {dog2sound}!")
print (f"{dog3name} is {dog3age} and says {dog3sound}!")

Instead, we can use classes, which are a way to create your own datatype. Classes can
contain custom methods that either return, print, or calculate different values for you, and
they con contain custom variables referred to as attributes.

class Dog:

"""A simple model of a dog."""

constructor - which creates a new model of a dog.

def __init__(self, name: str, age: int, sound: str):
self.name = name
self.age = age
self.sound = sound

method speak

def speak(self) -> None:

"""Print a sentence describing the dog."""

8 Chapter 2. PYTHON CLASSES

print (f"{self.name} is {self.age} and says {self.sound}!")

create dog objects called "instances" with the given variables
dogl = Dog("Teddy", 6, "woof")

dog2 = Dog("Fluffers", 2, "bark")

dog3 = Dog("Bella", 3, "grr")

call the behavior on each object
dogl.speak()
dog?2.speak()
dog3.speak()

Now lets talk about classes in context of polynomials!

The built-in types, such as strings, have functions associated with them. So, for example,
if you needed a string converted to uppercase, you would call its upper () function: -

my_string = "houston, we have a problem!"
louder_string = my_string.upper()

This would set louder_string to "THOUSTON, WE HAVE A PROBLEM!” When a function
is associated with a datatype like this, it called a method. A datatype with methods is
known as a class. Creating a new version of a class in a variable is called an instance. For
example, in the example, we would say “my_string is an instance of the class str. str
has a method called upper”

The function type will tell you the type of any data:
print (type(my_string))

This will output

<class 'str'>

A class can also define operators. +, for example, is redefined by str to concatenate strings
together:

long_string = "I saw " + "15 people"

Section 2.2 PARENT CLASSES 9

2.2 Parent classes

Classes can have classes they inherit from (called “parent classes”) or classes that inherit
from them (called “child classes”). Parent classes (ie ‘Animal’) give a subclass (or child)
different attributes or methods. Lets check out an example:

class Animal:
"""Generic animal base-class."""

def __init__(self, name: str, age: int) -> None:
self.name = name
self.age = age

def describe(self) -> None:
"""Print a basic description common to all animals.
print (f"{self.name} is {self.agel} years old.")

class Dog(Animal):
"""Dog inherits name and age from Animal, adds its own sound."""

def __init__(self, name: str, age: int, sound: str) -> None:
super() .__init__(name, age) # initialize the Animal part
self.sound = sound

def speak(self) -> None:
"""Dog-specific implementation of speak()."""
print (f"{self.name} is {self.age} and says {self.sound}!")

demonstration

dogs = [
Dog("Teddy", 6, "woof"),
Dog("Fluffers", 2, "bark"),
Dog("Bella", 3, "grr")

for dog in dogs:
dog.describe() # common behavior from Animal
dog.speak() # overridden behavior in Dog

Here, we have made a parent class for ‘dog’ called ‘animal’.

2.3 Making a Polynomial class

You have created a bunch of useful python functions for dealing with polynomials. Notice
how each one has the word “polynomial” in the function name like derivative_of_polynomial.

10 Chapter 2. PYTHON CLASSES

Wouldn't it be more elegant if you had a Polynomial class with a derivative method?
Then you could use your polynomial like this:

a = Polynomial([9.0, 0.0, 2.3])
b = Polynomial([-2.0, 4.5, 0.0, 2.1])
print(a, "plus", b , "is", at+b)

print(a, "times", b , "is", a*b)
print(a, "times", 3 , "is", a*3)
print(a, "minus", b , "is", a-b)

¢ = b.derivative()

print("Derivative of", b ,"is", c)
And it would output:

2.30x"2 + 9.00 plus 2.10x"3 + 4.50x + -2.00 is 2.10x"3 + 2.30x"2 + 4.50x + 7.00

2.30x72 + 9.00 times 2.10x"3 + 4.50x + -2.00 is 4.83x"5 + 29.25x73 + -4.60x"2 + 40.50x + -18.0
2.30x72 + 9.00 times 3 is 6.90x"2 + 27.00

2.30x72 + 9.00 minus 2.10x"3 + 4.50x + -2.00 is -2.10x"3 + 2.30x"2 + -4.50x + 11.00

Derivative of 2.10x"3 + 4.50x + -2.00 is 6.30x"2 + 4.50

Create a file for your class definition called Polynomial.py. Enter the following;:

class Polynomial:
def __init__(self, coeffs):
self.coefficients = coeffs.copy()

def __repr__(self):
Make a list of the monomial strings
monomial_strings = []

For standard form we start at the largest degree
degree = len(self.coefficients) - 1

Go through the list backwards
while degree >= 0:
coefficient = self.coefficients[degree]

if coefficient != 0.0:
Describe the monomial
if degree ==
monomial_string = "{:.2f}".format (coefficient)
elif degree ==

Section 2.3 MAKING A POLYNOMIAL CLASS 11

"{:.2f}x".format (coefficient)

monomial_string
else:
monomial_string = "{:.2f}x"{}".format(coefficient, degree)

Add it to the list
monomial_strings.append(monomial_string)

Move to the previous term
degree = degree - 1

Deal with the zero polynomial
if len(monomial_strings) ==
monomial_strings.append("0.0")

Separate the terms with a plus sign
return " + ".join(monomial_strings)

def __call__(self, x):
sum = 0.0
for degree, coefficient in enumerate(self.coefficients):
sum = sum + coefficient * x ** degree
return sum

def __add__(self, Db):
result_length = max(len(self.coefficients), len(b.coefficients))
result = []
for i in range(result_length):
if i < len(self.coefficients):
coefficient_a = self.coefficients[i]
else:
coefficient_a = 0.0

if 1 < len(b.coefficients):

coefficient b = b.coefficients[i]
else:

coefficient_b = 0.0
result.append(coefficient_a + coefficient_b)

return Polynomial (result)
def _mul_ (self, other):
Not a polynomial?
if not isinstance(other, Polynomial):

Try to make it a constant polynomial
other = Polynomial([other])

12 Chapter 2. PYTHON CLASSES

What is the degree of the resulting polynomial?
result_degree = (len(self.coefficients) - 1) + (len(other.coefficients) - 1)

Make a list of zeros to hold the coefficents
result = [0.0] * (result_degree + 1)

Iterate over the indices and values of a
for a_degree, a_coefficient in enumerate(self.coefficients):

Iterate over the indices and values of b
for b_degree, b_coefficient in enumerate(other.coefficients):

Calculate the resulting monomial
coefficient = a_coefficient * b_coefficient
degree = a_degree + b_degree

Add it to the right bucket
result[degree] = result([degree] + coefficient

return Polynomial (result)

__rmul__ = _ _mul__
def __sub__(self, other):
return self + other * -1.0

def derivative(self):

What is the degree of the resulting polynomial?
original_degree = len(self.coefficients) - 1
if original_degree > O:
degree_of_derivative = original_degree - 1
else:
degree_of_derivative

0

We can ignore the constant term (skip the first coefficient)
current_degree = 1
result = []

Differentiate each monomial

while current_degree < len(self.coefficients):
coefficient = self.coefficients[current_degree]
result.append(coefficient * current_degree)
current_degree = current_degree + 1

Section 2.3 MAKING A POLYNOMIAL CLASS 13

No terms? Make it the zero polynomial
if len(result) ==
result.append(0.0)

return Polynomial (result)

Create a second file called test_polynomial.py to test it:

from Polynomial import Polynomial

a = Polynomial([9.0, 0.0, 2.31)
b = Polynomial([-2.0, 4.5, 0.0, 2.1])
print(a, "plus", b , "is", at+b)
print(a, "times", b , "is", axb)
print(a, "times", 3 , "is", ax*3)
print(a, "minus", b , "is", a-b)

¢ = b.derivative()
print ("Derivative of", b ,"is", c)
slope = c(3)

print("Value of the derivative at 3 is", slope)

Run the test code:

python3 test_polynomial.py

CHAPTER 3

Common Polynomial Products

In math and physics, you will run into certain kinds of polynomials over and over again.
In this chapter, We are going to cover some patterns that you will want to be able to
recognize.

3.1 Difference of squares

Watch Polynomial special products: difference of squares from Khan Academy at https:
//youtu.be/uNweU6I4Icw.

If you are asked what (3x—7)(3x+7) is, you would use the distributive property to expand
that to (3x)(3x) + (3x)(7) + (—7)(3x) + (—7) (7). Two of the terms cancel each other, so this
is (3x)? — (7)?. This would simplify to 9x% — 49

You will see this pattern often. Anytime you see (a + b)(a —b), you should immediately
recognize it equals a’?—b?. (Note that the order doesn’t matter: (a—b)(a+b) also a?—b?.)

Working the other way is important too. Any time you see a’* — b?, that you should
recognize that you can change that into the product (a + b)(a — b). Making something
into a product like this is known as factoring. You probably have done prime factorization
of numbers like 42 = 2 x 3 x 7. In the next couple of chapters, you will learn to factorize
polynomials.

15

https://youtu.be/uNweU6I4Icw
https://youtu.be/uNweU6I4Icw

16 Chapter 3. COMMON POLYNOMIAL PRODUCTS

Exercise 4 Difference of Squares

Simplify the following products:

10.

‘— Working Space

(2x —3)(2x + 3)
. (74533 (7 —5%3)

- (x=da)x+a)

- B=m3+m)

. (—4%3 4+ 10)(—4x3 —10)
-
1

x + V7)(x — V/7) Factor the fol-
owing polynomials:

X2 —9
. 49 —16x°
. —25x8
x> —5

; Answer on Page 28 4

We are often interested in the roots of a polynomial. That is, we want to know “For what
values of x does the polynomial evaluate to zer?” For example, when you deal with falling
bodies, the first question you might ask would be “How many seconds before the hammer
hits the ground?” Once you have factored a polynomial into binomials, you can easily
find the roots.

For example, what are the roots of x? —5? You just factored it into (x + V/5)(x — v/5) This
product is zero if and only if one of the factors is zero. The first factor is only zero when
x is —V/5. The second factor is zero only when x is v/5. Those are the only two roots of
this polynomial.

Let’s check that result. /5 is a little more than 2.2. Using your Python code, you can
graph the polynomial:

import poly.py
import matplotlib.pyplot as plt

xx*2 - b5
= [-5.0, 0.0, 1.0]

Section 3.2 POWERS OF BINOMIALS

These lists will hold our x and y values
x_list = []
y_list = []

Start at x=-3
current_x =-3.0

End at x=3.0

while current_x < 3.0:
current_y = poly.evaluate_polynomial(pn, current_x)
Add x and y to respective lists
x_list.append(current_x)

y_list.append(current_y)

Move x forward
current_x += 0.1

Plot the curve
plt.plot(x_list, y_list)

plt.grid(True)
plt.show()

You should get a plot like this:

It does, indeed, seem to cross the x-axis near -2.2 and 2.2.

3.2 Powers of binomials

You can raise whole polynomials to exponents. For example,

(3x3 +5)2 = (3x3 +5)(3x* +5)

17

= 9x° + 15%3 4+ 15x% + 25 = 9x° + 30x> + 25

A polynomial with two terms is called a binomial. 5x? — 2x*, for example, is a binomial.
In this section, we are going to develop some handy techniques for raising a binomial to

some power.

Looking at the previous example, you can see that for any monomials a and b, (a +
b)? = a? + 2ab + b%. This is referred to as a perfect square binomial. So, for example,

(7%3 + m)% = 49x° + 1473 + 2

18 Chapter3. COMMON POLYNOMIAL PRODUCTS

Figure 3.1: A graph of x? — 5 showing the roots on the x-axis.

Section 3.2 POWERS OF BINOMIALS 19

Exercise 5 Squaring binomials

, . —— Working Space
Simply the following ‘

1. (x+1)?
2. (3x® +5)?
3. (x3—1)?
4. (x—=V7)?

X

; Answer on Page 29 4

What about (x + 2)3? You can do it as two separate multiplications:

(x+2)2=(x+2)(x+2)(x+2)
= (x+2) (x> +4x+4) =x> +4x> +4x + 2x* + 8x + 8
=6t +12x+ 8

In general, we can say that for any monomials a and b, (a + b)? = a® +3a?b + 3ab? + b3.

What about higher powers? (a+b)*, for example? You could use the distributive property
four times, but it starts to get pretty tedious.

Here is a trick. This is known as Pascal’s triangle

1T 3 3 1
1 4 6 4 1
15 10 10 5 1
1 6 15 20 15 6 1
17 21 35 35 21 7 1

Each entry is the sum of the two above it.

The coefficients of each term are given by the entries in Pascal’s triangle:

(a+b)* =1a* +4a%b + 6a?b? + 4ab> + 1b*

20 Chapter 3. COMMON POLYNOMIAL PRODUCTS

Exercise 6 Using Pascal’s Triangle

’— Working Space —‘

1. What is (x + m)>?

Answer on Page 29 —l

CHAPTER 4

Factoring Polynomials

We factor a polynomial into two or more polynomials of lower degree. For example, let’s
say that you wanted to factor 5x° — 45x. You would note that you can factor out 5x from

every term. Thus,
5%3 —45x = (5x%)(x* — 9)

You might notice that the second factor looks like the difference of squares, so
5x% — 45x = (5x)(x + 3)(x — 3)
That is as far as we can factorize this polynomial.

Why do we care? The factors make it easy to find the roots of the polynomial. This
polynomial evaluates to zero if and only if at least one of the factors is zero. Here, we see
that

e The factor (5x) is zero when x is zero.
e The factor (x + 3) is zero when x is -3.
e The factor(x — 3) is zero when x is 3.

So, looking at the factorization, you can see that 5x* — 45x is zero when x is 0, -3, or 3.

This is a graph of that polynomial with its roots circled:

4.1 How to factor polynomials

The first step when you are trying to factor a polynomial is to find the greatest common
divisor for all the terms, then pull that out. In this case, the greatest common divisor will
also be a monomial. Its degree is the least of the degrees of the terms, its coefficient will
be the greatest common divisor of the coefficients of the terms.

For example, what can you pull out of this polynomial?
12x'00 + 30x°1 + 42x'7

The greatest common divisor of the coefficients (12, 30, and 42) is 6. The least of the

21

22 Chapter 4. FACTORING POLYNOMIALS

100 ~

50 A

50

—100 A

—150 A T T T T T T T T T

Figure 4.1: Factoring for roots makes it easier to find the roots rather than in expanded
form.

Section4.1 HOW TO FACTOR POLYNOMIALS 23

degrees of terms (100, 31, and 17) is 17. So, you can pull out 6x'7:

12x100 + 30x31 +42x'7 = (6x'7)(2x33 + 5x'4 + 7)

Exercise 7 Factoring out the GCD monomial

) Working Space
FIXME Exercise here

Answer on Page 29

So, now you have the product of a monomial and a polynomial. If you are lucky, the poly-
nomial part looks familiar, like the difference of squares or a row from Pascal’s triangle.

Often, you are trying factor a quadratic like x? +5x + 6 in a pair of binomials. In this case,
the result would be (x + 3)(x + 2). Let’s check that:

(x+3)(x+2) = (x)(x)+ 3)(x)+ (2)(x) + (3)(2) = x> +5x + 6

Notice that 3 and 2 multiply to 6 and add to 5. If you were trying to factor x* + 5x + 6,
you would ask yourself”What are two numbers that when multiplied equal 6 and when
added equal 5?” And you might guess wrong a couple of times. For example, you might
say to youself, “Well, 6 times 1 is 6. Maybe those work. But 6 and 1 add 7. So those don’t
work.”

Solving these sorts of problems are like solving a Sudoku puzzle. You try things and
realize they are wrong, so you backtrack and try something else.

The numbers are sometimes negative. For example, x? +3x — 10 factors into (x +5)(x —2).

Exercise 8 Factoring quadratics
Working Space

Answer on Page 29

CHAPTER 5

Practice with Polynomials

At this point, you know all the pieces necessary to solve problems involving polynomials.
In this chapter, you are going to practice using all of these ideas together.

Watch Khan Academy’s Polynomial identities introduction here: https://youtu.be/
EvNKKyhLSpQ Also, watch the follow up here: https://youtu.be/-6qi049Q180

FIXME: Lots of practice problems here

25

https://youtu.be/EvNKKyhLSpQ
https://youtu.be/EvNKKyhLSpQ
https://youtu.be/-6qiO49Q180

APPENDIX A

Answers to Exercises

Answer to Exercise 1 (on page 4)

L

f'(t) =3t2 —6t—4

First, we expand the function by multiplying out the two binomials: (3u—1)(u+2) =
3u? + 6u —u — 2. Therefore, H(u) = 3u? + 5u — 2, and we can differentiate using
what we have learned about differentiating polynomials. H’(u) = 6u + 5. In a later
chapter, you will learn the Product rule, which will allow you to differentiate this
function without multiplying out the binomials.

Answer to Exercise 2 (on page 5)

def

derivative_of_polynomial(pn):

What is the degree of the resulting polynomial?
original_degree = len(pn) - 1
if original_degree > O:
degree_of_derivative = original_degree - 1
else:
degree_of_derivative

0

We can ignore the constant term (skip the first coefficient)
current_degree = 1
result = []

Differentiate each monomial

while current_degree < len(pn):
coefficient = pnl[current_degree]
result.append(coefficient * current_degree)
current_degree = current_degree + 1

No terms? Make it the zero polynomial

27

28 Chapter A. ANSWERS TO EXERCISES

if len(result) ==
result.append(0.0)

return result

Answer to Exercise 3 (on page 6)

(a) Velocity is the first derivative of the position function, s’(t) = 4t3 — 6t + 2t — 1.
cceleration is the derivative of the velocity function, s”(t) = 12t? — 12t + 2.

(b) s’(1.5) = 4(1.5)3 —6(1.5)2 + 2(1.5) — 1 = 2 We should note that this is a measurement
and needs units to make sense. Since s is in meters and t is in seconds, our velocity should
have units of I, so our final answer is s’(1.5s) = 2.

(c) s”(1.5) = 12(1.5)2 — 12(1.5) 4+ 2 = 11. Similarly to part (b), our answer needs units.
The units for acceleration are the units for velocity divided by the unit for time (because
acceleration is a rate of change of velocity), and our final answer should be s”(1.5s) = 113.
(d) When velocity and acceleration are occurring in the same direction (i.e. have the same

sign), the speed (the absolute value of velocity) is increasing. Since s’(1.5s) and s”(1.5s)
are both > 0, the speed of the object is increasing.

Answer to Exercise 4 (on page 16)
(2x —3)(2x +3) =4x? — 9

(74 5x33) (7 — 5%3) = 49 — 25x°

(x—a)(x+a) =x* — a?

B-mMEB+mn) =9

(=43 +10)(—4x> — 10) = 16x° — 100
(x+V7)(x—V7)=x* -7

x?—9 = (x+3)(x—3)

49 —16x° = (7+4x3)(7+4%)

mi? — 25x8 = (m+ 5x*)(m — 5x%)

x* =5 = (x++/5)(x = V/5)

Answer to Exercise 5 (on page 19)
(x+1)2=x*+2x+1

(3x°> +5)2 = 9x'0 + 30x° + 25
(3P—=1P2=xC—2x3+1

(x— V7 =x2 —2xV7 +7

Answer to Exercise 6 (on page 20)

(x + m)° = x° 4+ 5mx* 4+ 1072x3 + 10723 + x2 4 5m2x 4+ ©°

Answer to Exercise 7 (on page 23)

Answer to Exercise 8 (on page 23)

29

30 Chapter A. ANSWERS TO EXERCISES

INDEX

attributes, 7

class in python, 10
classes, 7
child, 9
parent, 9

derivative
definition of, 3

factoring polynomials, 21
instance, 8

perfect squares, 17
polynomials
differentiation, 3

subclass, 9

31

	Differentiating Polynomials
	Second order and higher derivatives

	Python Classes
	Object-Oriented Programming Introduction
	Parent classes
	Making a Polynomial class

	Common Polynomial Products
	Difference of squares
	Powers of binomials

	Factoring Polynomials
	How to factor polynomials

	Practice with Polynomials
	Answers to Exercises
	Index

