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Chapter 1

Alternating Current

We have discussed the voltage and current created by a battery. A battery pushes the
electrons in one direction at a constant voltage; this is known as Direct Current or DC. A
battery typically provides between 1.5 and 9 volts.

The electrical power that comes into your home on wires is different. If you plotted the
voltage over time, it would look like this:
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Figure 1.1: A graph of AC voltage over time.

The x axis here represents ground. When you insert a two-prong plug into an outlet, one
is “hot” and the other is “ground”. Ground represents 0 volts and should be the same
voltage as the dirt under the building.

The voltage is a sine wave at 60Hz. Your voltage fluctuates between -170v and 170v. Think
for a second what that means: The power company pushes electrons at 170v, then pulls
electrons at 170v. It alternates back and forth this way 60 times per second.

1.1 Power of AC

Let’s say you turn on your toaster, which has a resistance of 14.4 ohms. How much energy
(in watts) does it change from electrical energy to heat? We know that I = V/R and that
watts of power are IV . So, given a voltage of V , the toaster is consuming V2/R watts.

However, V is fluctuating. Let’s plot the power the toaster is consuming: Another sine
wave! Here is a lesser-known trig identity: (sin(x))2 = 1

2 −
1
2 cos(2x)

This is actually a cosine wave flipped upside down, scaled down by half the peak power,
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4 Chapter 1. ALTERNATING CURRENT

500

1000

1500

2000

0.004 0.008 0.012 0.016
seconds

watts

Figure 1.2: A plot of AC power over time.

and translated up so that it is never negative. Note that it is also twice the frequency of
the voltage sine wave.

If we say the peak voltage is Vp and the resistance of the toaster is R, the power is given
by

V2
p

2R
−

V2
p

2R
cos
(
2πt

120

)

As a toaster user and as someone who pays a power bill, you are mostly interested in the
average power. To get the average power, you take the area under the power graph and
divide it by the amount of time.

We can think of the area under the curve as two easy-to-integrate quantities summed:

• A constant function of y = fracV2
p2R

• A wave y = −
V2
p

2R cos
(
2πt
120

)
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)
When we integrate that constant function, we get tV2

p

2R .

When we integrate that wave for a complete cycle we get...zero! The positive side of the
wave is canceled out by the negative side.

So, the average power is V2
p

2R watts.

Someone at some point said, “I’m used to power being V2/R. Can we define a voltage
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measure for AC power such that this is always true?”

So we started using Vrms which is just Vp√
2
. If you look on the back of anything that plugs

into a standard US power outlet, it will say something like “For 120v”. What they mean
is, “For 120v RMS, we expect the voltage to fluctuate back and forth from 170v to -170v.”

Notice that this is the same Root-Mean-Squared that we defined earlier, but now we know
that if y = sin(x), the RMS of y is 1/

√
2 ≈ 0.707.

For current, we do the same thing. If the current is AC, the power consumed by a resistor
is I2RMSR, where IRMS is the peak current divided by

√
2.

1.2 Power Line Losses

A wire has some resistance. Thinner wires tend to have more resistance than thicker ones.
Aluminum wires tend to have more resistance than copper wires.

Let’s say that the power that comes to your house has to travel 20 km from the generator in
a cable that has about 1Ω of resistance per km. Let’s also say that your home is consuming
12 kilowatts of power. If that power is 120v RMS from the generator to your home, what
percentage of the power is lost heating the power line?

10 amps RMS flow through your home. When that current goes through the wire, I2R =
(100)(20) = 2000watts is lost to heat. This means the power company would need to
supply 14 kilowatts of power, knowing that 2 kilowatts would be lost on the wires.

What if the power company moved the power at 120,000 volts RMS? Now only 0.01
amps RMS flow through your home. When that current goes through the wire I2R =
(0.0001)(20) = .002 watts of power are lost on the power lines.

This is much, much more efficient. The only problem is that 120,000 volts would be
incredibly dangerous. So the power company moves power long distances at very high
voltages, like 765 kV. Before the power is brought into your home, it is converted into a
lower voltage using a transformer.

1.3 Transformers

A transformer is a device that converts electrical power from one voltage to another. A
good transformer is more than 95% efficient. The details of magnetic fields, flux, and
inductance are beyond the scope of this chapter, so we are going to give a relatively
simple (and admittedly incomplete) explanation for now.

A transformer is a ring with two sets of coils wrapped around it.
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Figure 1.3: A diagram of a transformer from Wikipedia.

When alternating current is run through the primary winding, it creates magnetic flux
in the ring. The magnetic flux induces current in the secondary winding. (This is called
induction.)

If VP is the voltage across the primary winding and VS is the voltage across the secondary
winding, they are related by the following equation:

VP

VS
=

NP

NS

where NP and NS are the number of turns in the primary and secondary windings.

There are usually at least two transformers between you and the very high voltage lines.
There are transformers at the substation that make the voltage low enough to travel on reg-
ular utility poles. On the utility poles, you will see cans that contain smaller transformers.
Those step the voltage down to the 120V RMS that your home uses.

1.4 Phase and 3-phase power

If two waves are “in sync”, we say they have the same phase.

If they are the same frequency, but are not in sync, we can talk about the difference in
their phase.

Here, we see that the smaller wave is lagging by π/2 or 90◦.

In most power grids, there are usually three wires carrying the power. The voltage on
each is 2π/3 out of phase with the other two:
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Figure 1.4: A diagram of two AC signals in sync.

Figure 1.5: A diagram of two AC signals out of phase.

Figure 1.6: A diagram of three AC signals, each 2π/3 radians out of phase.
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This is nice in two ways:

• While the power in each wire is fluctuating, the total power is not fluctuating at all.

• While the power plant is pushing and pulling electrons on each wire, the total num-
ber number of electrons leaving the load is zero.

(Both these assume that there each wire is attached to a load with the same constant
resistance.)

In big industrial factories, you will see all three wires enter the building. Large amounts
of smooth power delivery means a great deal to an industrial user.

In residential settings, each home gets its power from one of the three wires. However,
two wires typically carry power into the home. Each one carries 120V RMS, but they are
out of phase by 180 degrees. Lights and small appliances are connected to one of the wires
and ground, so they get 120V RMS. Large appliances, like air conditioners and washing
machines, are connected across the two wires, so they get 240V RMS.

120V240V

Figure 1.7: A diagram of AC out of phase in homes.

How do you get two circuits, 180 degrees out of phase, from one circuit? Using a center-
tap transformer.

FIXME: Diagram here



Chapter 2

Electromagnetic Induction

Electromagnetic induction is a fundamental concept in physics that describes how a chang-
ing magnetic field can produce an electric current. The phenomenon was discovered by
Michael Faraday in 1831 and is the principle behind many electrical devices, including
generators and transformers.

2.1 Faraday’s Law of Induction

It is important to note that induction is the process of generating a current in a conductor
by changing themagnetic field around it. In other words, if a conductor is moving through
a constant magnetic field, no current will be induced. However, if the magnetic field is
changing or if the conductor is moving through a gradient, a current will be induced.

The equation that describes electromagnetic induction is known as Faraday’s Law of Induc-
tion:

E = −
dΦB

dt

where E is the induced electromotive force (emf) in volts, and ΦB is the magnetic flux
through the circuit in webers (Wb). The negative sign indicates the direction of the in-
duced emf, as described by Lenz’s Law. Note that the induced emf is proportional to the
rate of change of the magnetic flux. This means that a faster change in the magnetic field
will result in a larger induced emf.

2.1.1 Magnetic Flux

Magnetic flux (ΦB) through a surface is defined as:

ΦB =

∫
~B · d~A

where ~B is the magnetic field and d~A is an infinitesimal area vector perpendicular to the
surface. You’ll learn more about vector calculus in later workbooks.

9
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2.2 Lenz’s Law

Lenz’s Law gives the direction of the induced current. It states that the induced current
will flow in such a way that its magnetic field opposes the change in magnetic flux that
produced it. This is reflected in the negative sign in Faraday’s Law.

2.3 Induction in a Coil

When a coil of wire is placed in a region where the magnetic field changes over time, an
emf is induced in the coil according to Faraday’s Law. If the coil has N turns, the total
induced emf is given by:

E = −N
dΦB

dt

This means that the induced emf is proportional to both the number of turns in the coil
and the rate of change of the magnetic flux through each turn.

If the magnetic field changes uniformly and the area of the coil is constant, the change in
flux can be written as:

∆ΦB = ∆B×A

where A is the area of the coil and ∆B is the change in magnetic field.

Therefore, the induced emf for a coil experiencing a uniform change in magnetic field is:

E = −N
A∆B

∆t

This principle is widely used in devices such as electric generators, where coils rotate in
a magnetic field to produce electricity.

Exercise 1 Induced EMF in a Coil

.A coil with 100 turns and area 0.2m2

experiences a change in magnetic field
from 0 to 5T over 0.1 s. Calculate the in-
duced emf.

Answer on Page 41

Working Space
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2.4 Applications of Electromagnetic Induction

• Electric Generators: Convert mechanical energy into electrical energy using electro-
magnetic induction.

• Transformers: Change the voltage of alternating current (AC) electricity using in-
duction between coils.

• Induction Cooktops: Use rapidly changing magnetic fields to heat cookware di-
rectly.





Chapter 3

Electric Motor

Electric motors are devices that convert electrical energy into mechanical energy. They
operate based on the interaction between magnetic fields and electric currents, producing
rotational motion. As mentioned previously, when an electric current flows through a
conductor, it generates a magnetic field around the conductor. If you place a magnet
near this conductor, the magnetic field will interact with the magnet’s field, causing the
conductor to experience a force. This force can be harnessed to create motion, which is
the fundamental principle behind electric motors.

3.1 Basic Electric Motor

The most common type of electric motor is the DC (Direct Current) brushed motor. It
consists of a coil of wire (armature) that rotates within a magnetic field created by per-
manent magnets or electromagnets. The armature is connected to a commutator, which
reverses the direction of the current in the coil as it rotates, ensuring continuous rotation
in one direction. The name ”brushed” refers to the use of brushes that make contact with
the commutator to supply current to the armature.

TODO: Can there be a graphic of a basic electric motor? The generator image is similar,
but the motor has a power source rather than a load.

Other types of electric motors include brushless DC motors, stepper motors, and AC
(Alternating Current) motors. Each type has its own characteristics and applications, but
they all operate on the same basic principles of electromagnetism.

3.2 Basic Electric Generator

Electric generators are the reverse of electric motors. They convert mechanical energy into
electrical energy by using the principle of electromagnetic induction. When a conductor
(such as a coil of wire) moves through a magnetic field, it induces an electric current in
the conductor. This is covered in another chapter.

To construct a basic electric generator, all you need is an electric motor and a load.

13
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Figure 3.1: Basic Electric Generator Diagram
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When you turn the motor with mechanical force, it will generate electricity that can be
used to power a load. As the coil rotates within the magnetic field, the changing mag-
netic field induces a current in the coil, which can flow through the load, providing the
necessary power.

Figure 3.2: Basic Electric Generator in Motion with Handcrank

If you instead turn the motor with a wheel, you can generate electricity in any manner of
ways. This simple principle is used all over the world to generate electricity. For example,
in hydroelectric power plants, water is used to turn large turbines connected to generators,
producing electricity on a massive scale. In wind power plants, wind turns the blades of
a turbine, which is connected to a generator that produces electricity. In coal and natural
gas power plants, steam is used to turn turbines connected to generators.

Figure 3.3: Basic Electric Generator in Motion with Wheel





Chapter 4

Drag

The very first computers were created to do calculations of how artillery would fly when
shot at different angles. The calculations were similar to the ones you just did for the
flying hammer, with two important differences:

• They were interested in two dimensions: the height and the distance across the
ground.

• However, artillery flies a lot faster than a hammer, so they also had to worry about
drag from the air.

Figure 4.1: A cannonball shot has a parabolic trajectory.

4.1 Wind resistance

The first thing they did was put one of the shells in a wind tunnel. They measured how
much force was created when they pushed 1 m/s of wind over the shell. Let’s say it was
0.1 newtons.

One of the interesting things about the drag from the air (often called wind resistance) is
that it increases with the square of the speed. Thus, if the wind pushing on the shell is 3

17



18 Chapter 4. DRAG

m/s, instead of 1 m/s, the resistance is 32 × 0.1 = 0.9 newtons.

(Why? Intuitively, three times as many air molecules are hitting the shell and each
molecule is hitting it three times harder.)

So, if a shell is moving with the velocity vector v, the force vector of the drag points in
the exact opposite direction. If µ is the force of wind resistance of the shell at 1 m/s, then
the magnitude of the drag vector is µ|v|2 with µ being the wind resistance force.

4.2 Initial velocity and acceleration due to gravity

Let’s say a shell is shot out of a tube at s m/s, and the tube is tilted θ radians above level.
The initial velocity will be given by the vector [s cos(θ), s sin(θ)]

Figure 4.2: The initial velocity vector of the shell.

(The velocity of the shell is actually a 3-dimensional vector, but we are only going to worry
about height and horizontal distance; we are assuming that the operator pointed it in the
right direction.)

To figure out the path of the shell, we need to compute its acceleration. We remember
that

F = ma

(Note that F and a are vectors.) Dividing both sides by m, we get:

a =
F

m
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Let’s figure out the net force on the shell, so that we can calculate the acceleration vector.

If the shell has a mass of b, the force due to gravity will be in the downward direction,
with a magnitude of 9.8b newtons.

To get the net force, we will need to add the force due to gravity with the force due to
wind resistance.

4.3 Simulating artillery in Python

Create a file called artillery.py.

import numpy as np
import matplotlib.pyplot as plt

# Constants
mass = 45 # kg
start_speed = 300.0 # m/s
theta = np.pi/5 # radians (36 degrees above level)
time_step = 0.01 # s
wind_resistance = 0.05 # newtons in 1 m/s wind
force_of_gravity = np.array([0.0, -9.8 * mass]) # newtons

# Initial state
position = np.array([0.0, 0.0]) # [distance, height] in meters
velocity = np.array([start_speed * np.cos(theta), start_speed * np.sin(theta)])
time = 0.0 # seconds

# Lists to gather data
distances = []
heights = []
times = []

# While shell is aloft
while position[1] >= 0:

# Record data
distances.append(position[0])
heights.append(position[1])
times.append(time)

# Calculate the next state
time += time_step
position += time_step * velocity
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# Calculate the net force vector
force = force_of_gravity - wind_resistance * velocity**2

# Calculate the current acceleration vector
acceleration = force / mass

# Update the velocity vector
velocity += time_step * acceleration

print(f"Hit the ground {position[0]:.2f} meters away at {time:.2f} seconds.")

# Plot the data
fig, ax = plt.subplots()
ax.plot(distances, heights)
ax.set_title("Distance vs. Height")
ax.set_xlabel("Distance (m)")
ax.set_ylabel("Height (m)")
plt.show()

When you run it, you should get a message like:

Hit the ground 1696.70 meters away at 20.73 seconds.

You should also see a plot of the shell’s path:
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4.4 Terminal velocity

If you shot the shell very, very high in the sky, it would keep accelerating toward the
ground until the force of gravity and the force of the wind resistance were equal. The
speed at which this happens is called the terminal velocity. The terminal velocity of a
falling human is about 53 m/s.

Note that kinematic equations do not apply to terminal velocity, because the acceleration
is not constant. Instead, we can use the fact that at terminal velocity, the force of wind
resistance equals the force of gravity.

Exercise 2 Terminal velocity

.What is the terminal velocity of the shell
described in our example?

Answer on Page 41

Working Space





Chapter 5

Vector-valued Functions

In the last chapter, you calculated the flight of the shell. For any time t, you could find a
vector [distance, height]. This can be thought of as a function f that takes a number and
returns a 2-dimensional vector. We call this a vector-valued function from R → R2 → R31.

5.1 Vector-valued functions: position

We often make a vector-valued function by defining several real-valued functions. For
example, if you threw a hammer with an initial upward speed of 12 m/s and a horizontal
speed of 4 m/s along the x axis from the point (1, 6, 2), its position at time t (during its
flight) would be given by:

f(t) = [4t+ 1, 6, −4.8t2 + 12t+ 2]

In other words, x is increasing with t, y is constant, and z is a parabola.

x

y

z

f(0) = [1, 6, 2]

f(1) = [5, 6, 9.1]

f(2) = [9, 6, 6.4]

f(2.6) = [11.4, 6, 0]

Figure 5.1: An example of a vector-valued function.

1the R symbol represents the set of all real numbers; the R2 symbol represents the set of all 2-dimensional
vectors, and R3 represents the set of all 3-dimensional vectors

23



24 Chapter 5. VECTOR-VALUED FUNCTIONS

5.2 Finding the velocity vector

Now that we have its position vector, we can differentiate each component separately to
get its velocity as a vector-valued function:

f ′(t) = [4, 0,−9.8t+ 12]

In other words, the velocity is constant along the x-axis, zero along the y-axis, and de-
creasing with time along the z axis.

x

y

z

f ′(0) = [4, 0, 12]

f ′(1) = [4, 0, 2.2]

f ′(2) = [4, 0,−7.6]

Figure 5.2: The derivatives of the position function (velocity) with respect to time.

5.3 Finding the acceleration vector

Now that we have its velocity, we can get its acceleration as a vector-valued function:

f ′′(t) = [0, 0,−9.8]

There is no acceleration along the x or y axes. It is accelerating down at a constant 9.8m/s2.
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x

y

z

f ′′(0) = [0, 0,−9.8]

f ′′(1) = [0, 0,−9.8]

f ′′(2) = [0, 0,−9.8]

Figure 5.3: The acceleration vector is constant and points downward.





Chapter 6

Circular Motion

Let’s say you tie a 0.16 kg billard ball to a long string and begin to swing it around in a
circle above your head. The string is 3 meters long, and the ball returns to where it started
every 4 seconds. We will assume the ball moves at a constant speed. If you start your
stopwatch as the ball crosses the x-axis, the position of the ball at any time t given by:

p(t) = [3 cos
(
2π

4
t

)
, 3 sin

(
2π

4
t

)
, 2]

(This assumes that the ball would be going counter-clockwise if viewed from above. The
spot you are standing on is considered the origin [0, 0, 0].)

Notice that the height is a constant — 2 meters in this case. That isn’t very interesting,
so we will talk just about the first two components. Here is what it would look like from
above:

In this case, the radius, r, is 3 meters. The period, T , is 4 seconds. In general, we say that
circular motion is given by:

p(t) =

[
r cos 2πt

T
, r cos 2πt

T

]

A common question is “How fast is it turning right now?” If you divide the 2π radians
of a circle by the 4 seconds it takes, you get the answer “About 1.57 radians per second.”
This is known as angular velocity and we typically represent it with the lowercase Omega:
ω. (Yes, it looks a lot like a “w”.) To be precise, in our example, the angular velocity
is ω = π

2 . Note that in this scenario, the angular velocity and linear speed are constant.
However, the velocity vector is not constant; as we will see in the next section, the direction
of the velocity vector is always changing.

Notice that this is different from the question “How fast is it going? (referring to linear
velocity)” This ball is traveling the circumference of 6π ≈ 18.85 meters every 4 seconds.
This means the speed of the ball is about 4.71 meters per second.

It is very important to distinguish between angular velocity and linear velocity. Angular
velocity is how fast the angle is changing and is referred to by ω, while linear velocity, v,
is how fast the object is moving along its path. While linear velocity has a constant speed,
it has always changing direction. The angular velocity is constant, but the linear velocity

27
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x

y

3

θ = 2πt
4 radians

3 cos(θ)

3 sin(θ)

Figure 6.1: A diagram of our ball and string scenario.
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is not.

6.1 Velocity

The velocity of the ball is a vector, and we can find that vector by differentiating each
component of the position vector.

For any constants a and b:

Expression Derivative
a sinbt ab cosbt
a cosbt −ab sinbt

Thus, in our example, the velocity of the ball at any time t is given by:

v(t) =

[
−
3(2π)

4
sin 2πt

4
,
3(2π)

4
cos 2πt

4
, 0

]

Notice that the velocity vector is perpendicular to the position vector. It has a constant
magnitude.

In general, an object traveling in a circle at a constant speed has the velocity vector:

v(t) = [−rω sinωt, rω cosωt]

where t = 0 is the time that it crosses the x axis. If ω is negative, that means the motion
would be clockwise when viewed from above.

The magnitude of the velocity vector is rω.
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x

y

v(t) = [−rω sinωt, rω cosωt]

Figure 6.2: Velocity vector of the ball in circular motion.
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Exercise 3 A Particle in Motion

.[This question was originally presented
as two multiple-choice problems on the
2012 AP Physics C exam.] The x and y

coordinates of a particle as it moves in a
circle are given by:

x = 5 cos (3t)y = 5 sin (3t)

What is the radius of the particle’s cir-
cular path? What is the particle’s speed?
Based on your answers, how long does it
take the particle to complete the circular
path?

Answer on Page 41

Working Space

6.2 Acceleration

We can get the (linear) acceleration by differentiating the components of the velocity
vector.

a(t) =
[
−rω2 cosωt,−rω2 sinωt

]
Notice that the acceleration vector points toward the center of the circle it is traveling
on. That is, when an object is traveling on a circle at a constant speed (notice that the
coefficients in a(t) are constant values, so acceleration is constant), its only acceleration is
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toward the center of the circle. This is known as centripetal acceleration.

x

y

a(t) =
[
−rω2 cosωt,−rω2 sinωt

]

Figure 6.3: Acceleration vector of the particle in circular motion.

The magnitude of the acceleration vector is rω2.

6.3 Centripetal force

How hard is the ball pulling against your hand? That is, if you let go, the ball would fly
in a straight line. The force you are exerting on the string is what causes it to accelerate
toward the center of the circle. We call this the centripetal force. It makes sense that the
centripetal force and centripetal acceleration are in the same direction.

Recall that F = ma. The magnitude of the acceleration is rω2 = 3
(
2pi
4

)2
≈ 7.4 m/s/s. The

mass of the ball is 0.16 kg. So, the force pulling against your hand is about 1.18 newtons.

The general rule is that when something is traveling in a circle at a constant speed, the
centripetal force needed to keep it traveling in a circle is:
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F = mrω2

If you know the radius r and the speed v of the object, here is the rule:

F =
mv2

r

We didn’t introduce centripetal force as a type of force because it isn’t its own force, like
friction or gravity. Rather, calling a force ”centripetal” tells us what the force is doing. A
centripetal force is any force that causes circular motion. For a satellite, the centripetal
force is gravity. In the opening example with the billiard ball, the centripetal force is the
tension in the string.

Example: A child is sitting on a merry-go-round as it spins. What provides the centripetal
force?

Solution: In this case, the child is rotating horizontally, so the centripetal force must also
be horizontal. Therefore, the centripetal force isn’t the child’s weight or the normal force.
It is the friction between the child and the merry-go-round that keeps the child turning.
Here is a free body diagram:

Example: If the child is 1.2 meters from the center of the merry-go-round and it spins at
0.25 rotations/second, what is the coefficient of friction between the child and the merry-
go-round?

Solution: Using our FBD and applying Newton’s Second Law, we see that:

FN − Fg = 0 → FN = mchildg

Ff = mrω2 = µFN = µmg

Since the child isn’t accelerating vertically, we know that the normal force equals the
child’s weight. The horizontal force, friction, must equal the mass of the child times the
acceleration. Additionally, from the vertical component, we know the friction is equal to
µmg, since the normal force is equal to the child’s weight. Looking at the second equation,
we see that:

mrω2 = µmg

We were given ω in rotations per second, but we need radians per second:

0.25rotation

1second
=

1rotation

4seconds
=

2πradians

4seconds
=

π

2

rad

s

We can divide m from both sides of mrω2 = µmg (notice: we don’t need to know the
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child’s mass to determine the coefficient of friction!):

rω2 = µg → µ =
rω2

g
=

(1.2m)
(
π
2s

)2
9.8m

s2
= 0.302

Therefore, the coefficient of friction between the child and the merry-go-round is 0.302.

6.3.1 Banked Turns

Have you every been driving on the highway and taken a turn where the road is at an
angle? Or maybe you’ve seen a sign like this on the road:

A banked curve is designed so that a car can
safely turn without slipping, even in the rain, if
the driver does not exceed the indicated speed.
Engineers choose an angle such that the bank pro-
vides sufficient force to turn the car without fric-
tion. Let’s look at a free body diagram for a car
taking a banked turn (see figure 6.4).

Figure 6.4: If there is no friction due to rain, then the only two forces acting on the car are
gravity and the normal force.
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In the past, we’ve split the vector for the force of
gravity into components that are parallel and per-
pendicular to the ramp. This time, we will split the
normal force into x and y components (see figure
6.5).

Figure 6.5: Geometrically, the x component of the normal force is given by FN cos (θ) and
the y component by FN sin (θ).

Assuming the radius of the turn is 20 m, at what
angle should the engineers build the banked turn?
(Let’s also assume the maximum speed is 25 mph,
like the traffic sign above.) First, let’s apply New-
ton’s Second Law in the x and y directions:

(1) FN cos (θ) − Fg = 0

(2) FN sin (θ) =
mv2

r

We know that Fg = mg. From this and equation
(1) we see that:

FN =
mg

cos (θ)

Substituting for FN into equation (2):(
mg

cos (θ)

)
sin (θ) =

mv2

r
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The mass can be divided from both sides, and sin (θ)
cos (θ) = tan (θ):

g tan (θ) =
v2

r

Solving for θ and substituting for the speed (25 mph ≈ 11.18m
s ) and radius:

θ = arctan
(
v2

gr

)
= arctan

( (
11.18m

s

)2(
9.8m

s2

)
(20m)

)

θ = arctan (0.6377) ≈ 32.53◦

6.4 Modeling Circular Motion

What causes circular motion is a constant force perpendicular to the motion. Consider a
satellite circling the Earth. The only force acting on the satellite is gravity, yet the satellite
does not fall to the Earth. Why? Let’s look at the relative direction of motion and gravity
for some different positions of the satellite (we’ll assume this satellite is moving clockwise
from our point of view):

No matter what position the satellite is in, the velocity and gravity vectors are perpendic-
ular.
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Exercise 4 Circular Motion

.Just as your car rolls onto a circular track
with a radius of 200 m, you realize your
0.4 kg cup of coffee is on the slippery
dashboard of your car. While driving
120 km/hour, you hold the cup to keep
it from sliding.

What is the maximum amount of force
you would need to use? (The friction of
the dashboard helps you, but the max is
when the friction is zero.)

Answer on Page 42

Working Space

Exercise 5 Twirling a Whistle

.The lifeguard at a local pool is twirling
their whistle horizontally. You wonder if
the lifeguard could spin the whistle fast
enough to break the string. The string
the whistle is attached to can hold amax-
imum mass of 20 kg before breaking. If
the lifeguard’s whistle string is 0.35 m
long and the average whistle has a mass
of 165 grams, what is the maximum tan-
gential speed the lifeguard can spin the
whistle? How many rotations per sec-
ond would the whistle be spinning at?
Based on this, do you think the lifeguard
is capable of spinning the whistle fast
enough to break the string?

Answer on Page 42

Working Space
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Exercise 6 The Gravitron

.The Gravitron is a carnival ride where
riders ”stick” to the wall of a spinning
cylinder as the floor beneath them drops
away. A video explanation is given here:
https://www.youtube.com/watch?v=ifAY5tbYDmQ.
Draw a free body diagram of a rider. If
the coefficient of friction between a rider
and the wall is 0.32 and the ride is 10 me-
ters across, what angular velocity must
the ride reach before the floor drops away?

Answer on Page 43

Working Space

6.5 Equations of Circular Motion

The same kinematic formulas can be used for circular motion, provided you use the correct
variables. The angular displacement, θ, is the angle in radians that the object has traveled.
The angular velocity, ω, is the rate of change of the angular displacement, and the angular
acceleration, α, is the rate of change of the angular velocity.

v = v0 + at ω = ω0 + αt (6.1)

x = x0 + v0t+
1
2at

2 θ = θ0 +ω0t+
1
2αt

2 (6.2)

v2 = v20 + 2a(x− x0) ω2 = ω2
0 + 2α(θ− θ0) (6.3)

Linear velocity, v, is related to angular velocity by the equation:

v = rω

Linear acceleration (aka centripetal acceleration), a, is related to angular acceleration by
the equation:

ac =
v2

r
= rω2

https://www.youtube.com/watch?v=ifAY5tbYDmQ
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Period, T , is the time it takes to complete one full rotation. The frequency, f, is the number
of rotations per second. The two are related by:

T =
2π

ω
=

2πr

v

f =
1

T

The centripetal force, usually labelled differently (such as tension or gravity), is given by
the equation:

F = mrω2 =
mv2

r

The angular velocity, ω is rotations with respect to time. It can be defined in the following
ways:

ωinst =
dθ

dt
ωavg =

∆θ

∆t

ω = 2πf =
2π

T
= ω =

v

r

Angular acceleration:

α =
dω

dt
, αavg =

∆ω

∆t





Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 10)

The change in magnetic flux is:

∆ΦB = ∆B ·A = (5T× 0.2m2) = 1Wb

The induced emf is:

E = −N · ∆ΦB

∆t
= −100 · 1Wb

0.1 s = −1000V

The magnitude of the induced emf is 1000V.

Answer to Exercise 2 (on page 21)

The force of gravity is 9.8× 45 = 441 newtons.

At any speed s, the force of wind resistance is 0.05× s2 = 0.05s2 newtons.

At terminal velocity, 0.05s2 = 441.

Solving for s, we get s =
√

441
0.05

Thus, terminal velocity should be about 94 m/s.

Answer to Exercise 3 (on page 31)

The radius is 5 m, because the coefficients of both the x and y functions is 5.

Recall that the velocity in each direction is given by the derivative of the position functions:

vx(t) =
d

dt
[5 cos (3t)] = −15 sin (3t)

vy(t) =
d

dt
[5 sin (3t)] = 15 cos (3t)

41
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The overall speed can be found from the x and y components of the velocity:

|v| =
√
v2x + v2y =

√
[−15 sin (3t)]2 + [15 cos (3t)]2

|v| =

√
152
[
sin (3t)2 + cos (3t)2

]
=

√
152 = 15

m

s

Notice that this is the coefficient for both components of the velocity.

To complete the path, the particle must travel 10π m. If the speed is 15m
s , then the time it

takes is:
t =

d

v
=

10π m

15m
s

=
2π

3
s ≈ 2.09 s

Answer to Exercise 4 (on page 37)

120 km
1hour

=
1000 m
1 km

120 km
1hour

1 hour
3600 seconds = 33.3 m/s

F =
mv2

r
=

0.4(33.3)2

200
= 2.2 newtons

Answer to Exercise 5 (on page 37)

Givens:
Tmax = (20kg) ·

(
9.8

m

s2

)
= 196N

r = 0.35m

mwhistle = 165g = 0.165kg

Unknown:
v = ?

f = ?

Equation(s):
F = ma

a =
v2

r
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v = rf

Solution: First, we find the tangential speed if the tension in the string is the maximum
tension:

Tmax = mwhistlea = mwhistle
v2

r

v =

√
Tmaxr

mwhistle

v =

√
196N (0.35m)

0.165kg
≈ 0.645

m

s

Therefore, the maximum tangential speed of the whistle before the string breaks is 0.645m
s .

Now finding the equivalent frequency (rotations per second):

f =
v

r
=

0.645m
s

0.35m
≈ 1.842Hz

So, to break the string, the lifeguard would have to spin it at nearly 2 rotations per second,
which is achievable. The lifeguard could possibly break the string.

Answer to Exercise 6 (on page 38)

There are three forces acting on the rider: gravity, friction with the wall, and the normal
force with the wall:

Ff

FN

Fg

The FBD lets us write equations for Newton’s Second Law in each dimension:

(1) max = FN
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(2) may = Ff − Fg = µFN −mg

Because the rider doesn’t fall down, we know that ay = 0m
s2

and therefore equation (2)
becomes:

µFN −mg = 0 → FN =
mg

µ

Having solved for FN, we substitute for it into equation (1):

max =
mg

µ
→ ax =

g

µ

Since we know g and µ, we can calculate ax:

ax =
9.8m

s2

0.32
= 30.625

m

s2

This is the minimum acceleration needed to keep the rider from slipping down. We can
now use the relationship between centripetal acceleration, tangential velocity, and the
radius to find the angular velocity:

a =
v2

r
=

(ωr)2

r
= ω2r

ω =

√
a

r
=

√
30.625m

s2

10 m
≈ 1.75

rad

s
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