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Chapter 1

Introduction to Data
Visualization

It is difficult for the human mind to look at a list of numbers and identify the patterns in
them, so we often use these numbers to make a picture. These pictures are called graphs,
charts, or plots. Often, the right picture can make the meaning in the data obvious. Data
visualization is the process of making pictures from numbers.

1.1 Common Types of Data Visualizations

Depending on the type of data and what you are trying to demonstrate about it, you
will use different types of data visualizations. How many types of data visualizations are
there? Hundreds, but we will concentrate on just four: The bar chart, the line graph, the
pie chart, and the scatter plot.

1.1.1 Bar Chart

Here is an example of a bar chart.

Each bar represents the cookie sales of one person. For example, Charlie has sold 6 boxes
of cookies, so the bar goes over Charlie’s name and reaches to the number 6.

Looking at this chart, you probably think, “Wow, Debra has sold a lot more cookies than
anyone else, and Francis has sold a lot fewer.”

The same data could be in a table like this:

Salesperson Boxes Sold
Allison 4
Becky 5
Charlie 6
Debra 12
Elias 5

Francis 1
Glenda 7

3



4 Chapter 1. INTRODUCTION TO DATA VISUALIZATION

Figure 1.1: A bar chart showing cookie sales per person.

A table (especially a large table) is often just a bunch of numbers. A chart helps our brains
understand what the numbers mean.

Bar charts can also go horizontally.

Sometimes we use colors to explain what contributed to the number.

This tells us that Becky sold more boxes of chocolate chip cookies than boxes of oatmeal
cookies.

1.1.2 Line Graph

Here is a line graph:

These are often used to show trends over time. Here, for example, you can see that the
number of shark attacks has been increasing over time.

You can have more than one line on a graph.
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Figure 1.2: A horizontal bar chart showing the same cookie sales data.

Figure 1.3: A bar chart with different colors showing types of cookes.



6 Chapter 1. INTRODUCTION TO DATA VISUALIZATION

Figure 1.4: A line graph showing shark attacks per year over two decades.

Figure 1.5: A line graph showing shark deaths versus mosquito deaths.
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1.1.3 Pie Chart

You use a pie chart when you are looking at the comparative size of numbers. This is best
for comparing percentages of a whole that sum to 100%. Here we can see that Nitrogen
makes up 78% of the gases in the air.

Figure 1.6: A pie chart of the various gases in the air.

1.1.4 Scatter Plot

Sometimes, you have a large number of data points with two values, and you are look-
ing for a relationship between them. For example, maybe you write down the average
temperature and the total sales for your lemonade stand on the 15th of every month:

Date Avg. Temp. Total Sales
15 January 2022 2.6º C $183.85
15 February 2022 -4.2º C $173.56
15 March 2022 13.3º C $195.22
15 April 2022 26.2º C $207.61
15 May 2022 27.5º C $210.88
15 June 2022 31.3º C $214.18
15 July 2022 33.5º C $215.23
15 Aug 2022 41.7º C $224.07

15 September 2022 20.7º C $198.94
15 October 2022 17.2º C $196.10

15 November 2022 1.7º C $185.10
15 December 2022 0.2º C $188.70
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You may wonder, ”Do I sell more lemonade on hotter days?”

To figure this out, you might create a scatter plot. For each day, you put a mark that
represents that temperature and the sales that day:

Figure 1.7: A scatterplot of temperature versus daily sales.

From this scatter plot, you can easily see that you do sell more lemonade as the tem-
perature goes up. Drawing a best-fit line along the the points will give you a correlation
coefficient. A positive correlation coefficient will give you a positively proportional rela-
tionship, while a negative coefficient will give you a inversely proportional relationship.

1.2 Make Bar Graph

Go back to your compound interest spreadsheet and make a bar graph that shows both
balances over time:

The year column should be used as the x-axis. There are two series of data that come
from C4:C16 and E4:E16. Tidy up the titles and legend as much as you like.

Looking at the graph, you can see the balances start the same, but balance of the account
with the larger interest rate quickly pulls away from the account with the smaller interest
rate.
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Figure 1.8: A bar graph made in google sheets showing interest.





Chapter 2

The Dot Product

If you have two vectors u = [u1, u2, . . . , un] and v = [v1, v2, . . . , vn], we define the dot
product u · v as

u · v = (u1 × v1) + (u2 × v2) + · · ·+ (un × vn)

The output of the dot product is a scalar quantity.

For example,
[2, 4,−3] · [5,−1, 1] = 2× 5+ 4×−1+−3× 1 = 3

This may not seem like a very powerful idea, but dot products are incredibly useful.
The enormous GPUs (Graphics Processing Units) that let video games render scenes so
quickly? They primarily function by computing huge numbers of dot products at mind-
boggling speeds.

Exercise 1 Basic dot products

.Compute the dot product of each pair of
vectors:

• [1, 2, 3], [4, 5,−6]

• [π, 2π], [2,−1]

• [0, 0, 0, 0], [10, 10, 10, 10]

Answer on Page 51

Working Space

2.1 Properties of the dot product

Sometimes we need an easy way to say “The vector of appropriate length is filled with
zeros.” We use the notation ~0 to represent this. Then, for any vector v, this is true:

11



12 Chapter 2. THE DOT PRODUCT

v ·~0 = 0

The dot product is commutative:

v · u = u · v

The dot product of a vector with itself is its magnitude squared:

v · v = |v|2

If you have a scalar a, then:

(v) · (au) = a(v · u)

So, if v and w are vectors that go in the same direction,

v ·w = |v||w|

If v and w are vectors that go in opposite directions,

v ·w = −|v||w|

If v and w are vectors that are perpendicular to each other, their dot product is zero:

v ·w = 0

2.2 Cosines and dot products

Furthermore, dot products’ interaction with cosine makes them even more useful is what
makes them so useful: If you have two vectors v and u,

v · u = |v||u| cos θ
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where θ is the angle between them.

So, for example, if two vectors v and u are perpendicular, the angle between them is π/2.
The cosine of π/2 is 0. The dot product of any two perpendicular vectors is always 0. In
fact, if the dot product of two non-zero vectors is 0, the vectors must be perpendicular (see
figure 2.1 for an example of perpendicular 2-dimensional vectors).

−2 −1 1 2 3 4 5

1

2

3

4

5

[−1, 4]

[4, 1]

Figure 2.1: The dot product of any two perpendicular vectors is zero.

If you have two non-zero vectors v and u, you can always compute the angle between
them:

θ = arccos
(

v · u
|v||u|

)

Arccos is short for arccosine, or cos− 1, and it is a function that is the inverse of cosine.
Cosine takes an angle and gives back the scaled x-component of the angle. Arccosine takes
the x-component of an angle and returns an angle with that x-component. However, there
is a limit to what arccos can return. Let’s look at cosine and its inverse, arccos (see figures
2.2 and 2.3).

When you use a calculator to evaluate arccos, the calculator automatically restricts the
results to between 0 and π. Let’s look at an example of using the dot product to determine
the angle between two vectors:

Example: What is the angle between u =
[√

3, 1
]
and v = [0,−1]?

Solution: We know that u · v = |u| |v| cos θ. Therefore, we also know that:

cos θ =
u · v
|u| |v|
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2 4 6
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−0.5
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1
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y

Figure 2.2: Cosine is a function: there is exactly one output for every input.

−1 −0.5 0.5 1

2

4

6

x

y

Figure 2.3: Arccos is not a function: there are many angles with the same x-component.
Notice that one input value has many output values (see the red dashed line).
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First, let’s compute the dot product:

u · v =
√
3 · 0+ 1 ·−1 = −1

And therefore:
cos θ =

−1

|u| |v|

Now, let’s find the magnitudes of both vectors:

|u| =
√(√

3
)2

+ (1)2 = 2

|v| =
√
(0)2 + (−1)2 = 1

Substituting for the magnitudes, we find that:

cos θ =
−1

2 · 1
=

−1

2

To solve for θ, we take the arccos of both sides:

arccos (cos θ) = θ = arccos −1

2

What angles have a cosine of −1/2? We know that 2π/3, 4π/3, 8π/3, etc., all have a cosine
of −1/2. Because the range of arccos is restricted to between 0 and π, our result is:

θ = arccos −1

2
=

2π

3

.

Therefore, the angle between u and v is 2π/3 (or 120◦).
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Exercise 2 Using dot products

.What is the angle between these each
pair of vectors:

• [1, 0], [0, 1]

• [3, 4], [4, 3]

• [2,−1, 2], [−1, 2,−2]

• [−5, 0,−1], [2, 3,−4]

Answer on Page 51

Working Space

2.3 Dot products in Python

NumPy will let you do dot products using the the symbol @. Open first_vectors.py
and add the following to the end of the script:

# Take the dot product
d = v @ u
print("v @ u =", d)

# Get the angle between the vectors
a = np.arccos(d / (mv * mu))
print(f"The angle between u and v is {a * 180 / np.pi:.2f} degrees")

When you run it you should get:

v @ u = 4
The angle between u and v is 78.55 degrees

2.4 Work and Power

Earlier, we mentioned that mechanical work is the product of the force you apply to
something and the amount it moves. For example, if you push a train with a force of 10
newtons as it moves 5 meters, you have done 50 joules of work.
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What if you try to push the train sideways? It moves down the track 5 meters, but you
push it as if you were trying to derail it — perpendicular to its motion. You have done no
work, because the train didn’t move at all in the direction you were pushing.

Now that you know about dot products: The work you do is the dot product of the force
vector you apply and the displacement vector of the train. (The displacement vector is
the vector that tells how the train moved while you pushed it.)

Similarly, we mentioned that power is the product of the force you apply and the velocity
of the mass you are applying it to. It is actually the dot product of the force vector and
the velocity vector.

For example, if you are pushing a sled with a force of 10 newtons and it is moving 2
meters per second, but your push is 20 degrees off, you aren’t transferring 20 watts of
power to the sled. You are transferring 10× 2× cos(20 degrees) ≈ 18.8 watts of power.





Chapter 3

Manufacturing

If you try to think of any man-made object, whether it was made from woods, metals, or
plastics, chances are it was produced through a manufacturing process.

Over time, these processes have been refined to be more efficient, cost-effective, and faster
at producing the goods that we use on a daily basis.

New methods are also constantly being developed by engineers and scientists, and today
the range of options available means that choosing the most appropriate manufacturing
method involves finding the sweet spot between cost-effectiveness, yield, and time needed.

3.1 Woods and Metals Processes

Manufacturing methods that are able to process woods and metals are typically the pro-
cesses that are used to construct the vast majority of the built world around us.

Infrastructure, transportation methods, and buildings would not exist without the advent
of processes that allow us to accurately machine raw woods and metals into our desired
forms.

The following sections will cover methods used to process both material types.

3.1.1 Milling

Mills are powerful tools that allow us to carve out complex shapes from blocks of raw
material. A tool bit follows a path to remove the desired material, which makes it a
subtractive manufacturing process. The tool bit rotates at a very high speed, which allows
it to process harder materials such as woods and metals.

19



20 Chapter 3. MANUFACTURING

There are various types of mills, ranging from a 3-axis mill, which can cut out simple
shapes in the X, Y, and Z axes, all the way to 6-axis mills, which can also rotate about
those axes to create more complex curvatures.
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In manufacturing settings where speed and repeatability is paramount, mills are often
computer controlled. This functionality is referred to as Computer Numerical Control, or
CNC. CNC mills are able to repeatedly follow a tool path, resulting in consistent and
accurate parts.

3.1.2 Lathing

Lathes are tools that allow us to carve out complex cylindrical shapes from raw material.
Like a mill, it also is a subtractive manufacturing process. However, lathes rotate the
material itself at a high speed, rather than the tool bit. As the material rotates, the tool bit
can be used to extract material layer by layer.
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In the manufacturing industry, lathes are also often computer controlled. Alongside CNC
mills, these CNC lathes are responsible for a majority of the objects that we interact with
everyday.

3.2 Metal-specific Processes

While mills and lathes are already able to cover the vast majority of manufacturing needs
for woods and metals, there are certain processes that are specifically enabled by the
unique properties of metals. More often than not, these processes leverage the malleability
(ability to bend without breaking) of metals at room temperature or higher.

3.2.1 Sheet Metal Processes

While milling allows us to process blocks of metal to great effect, sometimes the applica-
tion we need does not require material of such thickness.

This is where sheet metal comes in, as well as the methods we use to process it. One of
the most common techniques in manufacturing is rolling, where a raw sheet is gradu-
ally rolled into the desired shape. This method is used to create many objects you may
recognize, such as metal roofings, aircraft frames, and more.
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Another method is stamping, where a raw sheet is stamped into the desired shape. This
allows us to create surfaces with complex geometries in an instant, and in large quantities.
This method is often used for applications like the exterior panels of a car, where parts
with compound curves are needed.

Lastly, there are also separate processes used to increase the strength of sheet metal parts.
This falls under the category of sheet metal forming, and involves bending the edges of a
part to form a reinforced flap. Almost all sheet metal parts are reinforced in this manner,
as it is a relatively simple process and also helps to create a clean edge for a more finished
look.

3.2.2 Casting

The last kind of metal-specific process we will cover is casting. Casting involves pouring
molten metal into a mold, then letting the metal cool and set inside the mold. Smaller
components with complex geometries and limited structural requirements (such as toys)
are often cast, as it is an accurate and high-volume manufacturing method.



24 Chapter 3. MANUFACTURING

Casting also results in minimal material wastage, as it is not a subtractive manufacturing
method where excess material is machined away, but rather only the specific amount of
material required is poured in each time.

3.3 Wood-specific Processes

Similar to metals, there are also certain manufacturing processes that are enabled by the
unique qualities of wood. These make use of the water content inherent in wood, and the
flexibility it enables.

3.3.1 Bending

Turning raw wood into flat, workable pieces involves a variety of tools that you probably
know of already, such as saws and drills. However, there are specific processes that help
us create curved shapes with wood, in addition to the mill and the lathe mentioned earlier.

This is where bent lamination comes in. Bent lamination involves layering multiple thin
veneers or strips of wood with adhesive, and clamping it to create the desired form while
letting the glue dry. This method is often used for furniture production, enabling contin-
uous curves in wood with tight radii.
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Steam can also be used for bending, by helping soften the wood fibers to increase flexi-
bility. Once the desired form is reached, the part can then cool down and harden. Unlike
bent lamination, steam bending can be done without adhesives.

3.4 Plastic-specific Processes

Although plastics only came into prominence in the mid 20th century, they have changed
manufacturing and, by extension, the world as we know it. Easily manufacturable, durable,
and cost-effective, they have come to permeate almost everything we use on a daily basis.

It must also be noted that these exact qualities have also resulted in the proliferation of
plastics in our environment, and as such, usage of plastics should be well considered and
limited. Alternative biodegradable materials are currently being trialed by scientists and
would look to replicate many of the same qualities we expect from plastics, including its
manufacturability.

3.4.1 Injection Molding

Injection molding is responsible for the vast majority of plastic products that you interact
with on a daily basis. It is extremely quick, highly accurate, and has minimal material
wastage, making it a popular and cost effective method of manufacturing plastic goods.

Similar to casting, injection molding involves injecting molten plastic into a mold, then
allowing the part to cool and set inside the cavity.

You can often tell when a part was produced through injection molding, with telltale signs
such as the parting line. This is where the parts of the mold meet, forming a visible line
on the surface of a part.
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3.5 3D Printing

Injection molding has traditionally been the go-to technique for manufacturing plastic
goods. However, new technologies result in the advent of new manufacturing methods.
3D printing is one such method, having come to prominence in the last few decades as
a way to quickly prototype parts without having to create the molds needed for injection
molding.

3D printing is an additive manufacturing process, where molten material is applied layer
by layer to form the desired geometry. It allows for complex geometries, standardized
batch production, and whilst the accuracy may currently lag behind traditional injection
molding, it is also improving rapidly.
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3.6 Laser Cutting and Water Jet

Similarly, another manufacturing method enabled by new technologies is laser cutting.
Like 3D printing, it has come into prominence as a method to quickly prototype parts.
However, it is not an additive manufacturing process.

Instead laser cutting uses a laser beam to cut and etch through sheets of plastic, however
it can also be used for other materials such as fabrics and card stocks. Laser cutting is
mostly limited by material thickness, and as such can only cut through thinner sheets of
material.

Similarly, water jetting uses pressurized water to blast a stream of water through material
(metal, wood, stone, or rubber usally). As the nozzle moves, the high pressure water
traces a path throughout the material. Water jets are also limited to material thickness, as
too thick of material may not easily be cut.



28 Chapter 3. MANUFACTURING



Chapter 4

Polar Coordinates

We have already seen how to plot a function with (x, y) coordinates. For every x that we
put into a function, it returns a y. These pairs of coordinates tell us where on the xy-plane
to graph the function. This coordinate system, where x and y are oriented horizontally
and vertically, is called the Cartesian coordinate system. It can be used to describe 2D
space, but it is not the only way.

1 2 3

1

2

3

r =
√

x2 + y2

θ = arctan y
x

θ

x

y

Figure 4.1: The point (1, 2) is
√
5 units from the origin and approximately 1.107 radians

counterclockwise from horizontal

Instead of thinking about the horizontal and vertical position, we could think about dis-
tance from the origin and rotation about the origin. Take the Cartesian coordinate point
(1, 2) (see figure 4.1). How far is (1, 2) from the origin, (0, 0)? We can create a right trian-
gle, where the legs are parallel to the x and y axes. This means the leg lengths are 1 and
2, and we can use the Pythagorean theorem to find the length of the hypotenuse (which
is the distance from the origin to the point):

c2 = a2 + b2

c2 = 12 + 22 = 1+ 4 = 5

c =
√
5

Therefore, the Cartesian point (1, 2) is
√
5 units from the origin. This is not enough to

find our point: there are infinite points that are
√
5 from the origin (see 4.2). To identify a

particular point that is a distance of
√
5 from the origin, we also need an angle of rotation.

By convention, angles are measured from the positive x- axis. This means points on the

29
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positive x-axis have an angle of θ = 0, points on the positive y-axis have an angle of θ = π
2 ,

and so on.

−2 2

−2

2

x

y

Figure 4.2: There are infinite points
√
5 from the origin, represented by the circle with a

radius of
√
5 centered about the origin

We can use trigonometry to find the appropriate angle of rotation for our Cartesian point.
There are many ways to do this, but using arctan is the most straightforward. Recall that:

tan θ =
opposite

adjacent

That is, for a given angle in a right triangle, the tangent of that angle is given by the length
of the opposite leg divided by the adjacent leg. In our case, the opposite leg is the vertical
distance (y-value of the Cartesian point) and the adjacent leg is the horizontal distance
(x-value of the Cartesian point), which means:

tan θ =
2

1

θ = arctan 2 ≈ 1.107 radians

4.1 Plotting Polar Coordinate Points

How do we plot polar coordinate points? Begin by locating the angle given by the second
coordinate (remember, the angle is measured counterclockwise from the horizontal). Your
point will lie somewhere on this line. Next, move outwards along the angle by the radius
given by the first coordinate.

Example: Plot the polar coordinate point (2, π3 ).

Solution: Begin by locating θ = π
3 (see figure 4.3)
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π
3
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22π
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π
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6
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11π
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0 1 2

Figure 4.3: θ = π
3

Then, move your finger or pencil along the line θ = π
3 until you reach r = 2 (see figure

4.4).
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π
6
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3

π
22π

3
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11π
6

0 1 2

Figure 4.4: (2, π3 )
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Exercise 3

.Plot the following polar coordinate points
on the provided polar axis (hint: nega-
tive angles are taken counterclockwise):

1. (1, π)

2. (1.5, π2 )

3. (1.5,−π
6 )

4. (2, 3π4 )

0

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

0 1 2 3

Answer on Page 52

Working Space

4.2 Equivalent Points

Unlike the Cartesian coordinate system, two different coordinates may lie at the same lo-
cation. Consider the points (1, π4 ) and (−1, 5π4 ) (see figure 4.5). When a radius is negative,
you move backwards back over the origin, like a mirror image.
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r = 1

r = −1

θ = 5π
4

Figure 4.5: The polar coordinates points (1, π4 ) and (−1, 5π4 ) are the same location on a
polar axis
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4.3 Changing coordinate systems

4.3.1 Cartesian to Polar

From the example above, you should see that a given Cartesian coordinate, (x, y), can also
be expressed as a polar coordinate, (r, θ), where r is the distance from the origin and θ is
the angle of rotation from the horizontal. (Note: Polar functions are generally given as r

defined in terms of θ, which means the dependent variable is listed first in the coordinate
pair, unlike Cartesian coodinates.) Additionally,

r =
√
x2 + y2

θ = arctan y

x

Example: Express the Cartesian point (−3, 4) in polar coordinates.

Solution: Taking x = −3 and y = 4, we find that:

r =
√

(−3)2 + 42 =
√
9+ 16 =

√
25 = 5

We follow the convention of only taking the positive solution to the square root. Finding
θ:

θ = arctan 4

−3

When you evaluate the arctan with a calculator, you are likely to get back θ = −0.928.
Recall that tanθ = tan θ± nπ, where n is an integer. We know our Cartesian point, (−3, 4),
is in the II quadrant, while the angle −0.928 radians would fall in the IV quadrant. So,
clearly, −0.928 radians is not correct. Most calculators restrict the output of arctan to
angles between −π

2 and π
2 , because there are actually multiple angles where tan θ = − 4

3 .
Since tan θ = tan θ± nπ, we also know that:

arctan−
4

3
= −0.928± nπ

Another possible θ is−0.928+π ≈ 2.214, which does fall in the appropriate quadrant. This
means the polar coordinates (5, 2.214) are the same as the Cartesian coordinates (−3, 4).
Note: It is standard practice to express angles in radians, and not degrees, when using
polar coordinates.
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4.3.2 Polar to Cartesian

We can also leverage our knowledge of right triangles to convert polar coordinates to
Cartesian coordinates. Take the polar coordinate (2, π4 ) (see figure 4.6). We can draw
a right triangle with legs parallel to the x and y axes (not shown in the figure) and a
hypotenuse that goes from the origin to the polar coordinate (2, π4 ).

(r, θ) = (2, π4 )

θ

r
y
=

rsin
θ

x = r cos θ
(0, 0)

Figure 4.6: To convert from polar to Cartesian coordinates, use the identities x = r cos θ
and y = r sin θ

Recall from trigonometry that:

sin θ =
opposite leg
hypotenuse

We know that the hypotenuse of this triangle has a length of r. The opposite leg is vertical
and is the same length as the distance of the polar coordinate from the x-axis. Therefore,
the length of the vertical leg represents the y value of that same polar coordinate if it were
expressed in Cartesian coordinates. So, we can say that:

sin θ =
y

r

And therefore:
y = r sin θ

By a similar process, we also see that:

x = r cos θ

This is easy to visualize and understand for 0 ≤ θ ≤ π
2 , but it also holds for other values

of θ.

Example: Express the polar coordinate ( 32 ,
2π
3 ) in Cartesian coordinates.
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Solution: From the polar coordinate, we see that θ = 2π
3 and r = 3

2 . Therefore:

x = r cos θ =
3

2
· cos 2π

3
=

3

2
·−1

2
= −

3

4

y = r sin θ =
3

2
· sin 2π

3
=

3

2
·
√
3

2
=

3
√
3

4

The Cartesian coordinate (− 3
4 ,

3
√
3

4 ) has the same location as the given polar coordinate.

Exercise 4

.Convert the following polar coordinates
to Cartesian coordinates:

1. (2, 3π2 )

2. (
√
2, 3π4 )

3. (3,−π
4 )

4. (−3,−π
3 )

5. (2,−π
2 )

Answer on Page 52

Working Space
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Exercise 5

.Convert the following Cartesian coordi-
nates to polar coordinates. Restrict θ to
0 ≤ θ < 2π.

1. (−4, 4)

2. (3, 3
√
3)

3. (
√
3,−1)

4. (−6, 0)

5. (−2,−2)

Answer on Page 52

Working Space

4.4 Circles in Polar Coordinates

Many conic sections, including circles, are simpler to express as polar functions than as
Cartesian functions. Consider a circle with a radius of 2 centered about the origin. The
polar function for this is r = 2 for all θ. Let’s write a Cartesian function for the same circle.

We know that for every point on the circle, the distance to the origin is 2. This means
that, by the Pythagorean theorem,

r2 = x2 + y2

.

(see figure 4.7)

We can solve this equation for y, given that r = 2 (in this case):

y = ±
√
22 − x2

Notice that this is really two equations: y =
√
22 − x2 and y = −

√
22 − x2. This is more

complex than the polar equation, r = 2.

As seen above, the equation of a circle with radius R centered on the origin is simply r = R
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Figure 4.7: All (x, y) pairs on the circle are the same distance from the origin

in polar coordinates. What if we want a circle centered somewhere else? Polar coordinates
are best when a circle is bisected by the x or y axis. Consider the polar equation r = 3 sin θ.
Let’s use a table to find some points and plot the function:

θ r = 3 sin θ

0 0
π
6

3
2

π
4

3
√
2

2
π
3

3
√
3

2
π
2 3
2π
3

3
√
3

2
3π
4

3
√
2

2
5π
6

3
2

π 0

Here is how those points look plotted (see figures 4.8 and 4.9):

So, the polar equation r = 3 sin θ gives a circle with radius 3
2 centered at (0, 32).

Example: Describe the graph of r = cos θ. Feel free to make a rough plot on the blank
polar axis below:
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Figure 4.8: Several points for r = 3 sin θ plotted on Cartesian and polar coordinate systems
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Figure 4.9: r = 3 sin θ plotted on a polar coordinate system
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Solution: This plot will look like a circle of radius 0.5 centered at (0.5, 0) (in polar coor-
dinates).
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11π
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0 0.5 1 1.5.
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Exercise 6

.Sketch the following polar functions on
the provided polar axis for 0 ≤ θ < 2π:

1. r = 3

2. θ = π

3. r = 2 cos θ
2

4. r = −4 sin θ

5. r = θ

0

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

0 2 4

Answer on Page 53

Working Space



Chapter 5

Sound

When you set off a firecracker, it makes a sound.

Let’s break that down a little more. Inside the cardboard wrapper of the firecracker, there
is potassium nitrate (KNO3), sulfur (S), and carbon(C). These are all solids. When you
trigger the chemical reactions with a little heat, these atoms rearrange themselves to be
potassium carbonate (K2CO3), potassium sulfate (K2SO4), carbon dioxide (CO2), and
nitrogen (N2). Note that the last two are gasses.

The molecules of a solid are much more tightly packed than the molecules of a gas. So
after the chemical reaction, the molecules expand to fill a much bigger volume. The air
molecules nearby get pushed away from the firecracker. They compress the molecules
beyond them, and those compress the molecules beyond them.

This compression wave radiates out as a sphere; its radius growing at about 343 meters
per second (“The speed of sound”).

The energy of the explosion is distributed around the surface of this sphere. As the radius
increases, the energy is spread more and more thinly around. This is why the firecracker
seems louder when you are closer to it. (If you set off a firecracker in a sewer pipe, the
sound will travel much, much farther.)

This compression wave will bounce off of hard surfaces. If you set off a firecracker 50
meters from a big wall, you will hear the explosion twice. We call the second one an
“echo”.

The compression wave will be absorbed by soft surfaces. If you covered that wall with
pillows, there would be almost no echo.

The study of how these compression waves move and bounce is called acoustics. Before
you build a concert hall, you hire an acoustician to look at your plans and tell you how to
make it sound better.

5.1 Pitch and frequency

The string on a guitar is very similar to the weighted spring example. The farther the
string is displaced, the more force it feels pushing it back to equilibrium (remember the
tension force?). Thus, it moves back and forth in a sine wave. (OK, it isn’t a pure sine
wave, but we will get to that later.)

43
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Figure 5.1: A firecracker exploding causes an initial sound wave and an echo.

The string is connected to the center of the boxy part of the guitar, which is pushed and
pulled by the string. That creates compression waves in the air around it.

If you are in the room with the guitar, those compression waves enter your ear and push
and pull your eardrum, which is attached to bones that move a fluid that tickles tiny hairs,
called cilia, in your inner ear. This is how you hear.

We sometimes see plots of sound waveforms. The x-axis represents time. The y-axis
represents the amount the air is compressed at the microphone that converted the air
pressure into an electrical signal.

If the guitar string is made tighter (by the tuning pegs) or shorter (by the guitarist’s fingers
on the strings), the string vibrates more times per second. We measure the number of
waves per second and we call it the frequency of the tone. The unit for frequency is Hertz:
cycles per second. The period is opposite of frequency: it is the time it takes for one cycle
to complete. The unit for period is seconds per cycle.

Musicians have given the different frequencies names. If the guitarist plucks the lowest
note on his guitar, it will vibrate at 82.4 Hertz. The guitarist will say “That pitch is low
E.” If the string is made half as long (by a finger on the 12th fret), the frequency will be
twice as fast (164.8 Hertz), and the guitarist will say “That is E an octave up.”

For any note, the note that has twice the frequency is one octave up. The note that has
half the frequency is one octave down.

The octave is a very big jump in pitch, so musicians break it up into 12 smaller steps. If
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Figure 5.2: A soundwave graph over time.

the guitarist shortens the E string by one fret, the frequency will be 82.4×1.059463 ≈ 87.3

Hertz.

Shortening the string one fret always increases the frequency by a factor of 1.059463. Why?

Because 1.05946312 = 2. That is, if you take 12 of these hops, you end up an octave higher.
This, the smallest hop in western music, is referred to as a half step.

Exercise 7 Notes and frequencies

.

The note A near the middle of the piano,
is 440Hz. The note E is 7 half steps above
A. What is its frequency?

Answer on Page 55

Working Space

5.2 Chords and harmonics

Of course, a guitarist seldom plays only one string at a time. Instead, they use the frets to
pick a pitch for each string and strums all six strings.
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Some combinations of frequencies sound better than others. We have already talked about
the octave: If one string vibrates twice for each vibration of another, they sound sweet
together.

Musicians speak of “the fifth”. If one string vibrates three times and the other vibrates
twice in the same amount of time, they sound sweet together.

Likewise, if one string vibrates 4 times while the other vibrates 3 times, they sound sweet
together. Musicians call this “the third.”

Each of these different frequencies tickle different cilia in the inner ear, so you can hear
all six notes at the same time when the guitarist strums their guitar.

When a string vibrates, it doesn’t create a single sine wave. Yes, the string vibrates from
end-to-end, and this generates a sine wave at what we call the fundamental frequency. How-
ever, there are also “standing waves” on the string. One of these standing waves is still
at the centerpoint of the string, but everything to the left of the centerpoint is going up,
while everything to the right is going down. This creates an overtone that is twice the
frequency of the fundamental.

The next overtone has two still points — it divides the string into three parts. The outer
parts are up, while the inner part is down. Its frequency is three times the fundamental
frequency.

And so on. 4 times the fundamental, 5 times the fundamental, etc.

In general, tones with many overtones tend to sound bright. Tones with just the funda-
mental sound thin.

Humans can generally hear frequencies from 20Hz to 20,000Hz (or 20kHz). Young people
tend to be able to hear very high sounds better than older people.

Dogs can generally hear sounds in the 65Hz to 45kHz range.
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5.3 Making waves in Python

Let’s make a sine wave and add some overtones to it. Create a file named harmonics.py.

import matplotlib.pyplot as plt
import math

# Constants: frequency and amplitude
fundamental_freq = 440.0 # A = 440 Hz
fundamental_amp = 2.0

# Up an octave
first_freq = fundamental_freq * 2.0 # Hz
first_amp = fundamental_amp * 0.5

# Up a fifth more
second_freq = fundamental_freq * 3.0 # Hz
second_amp = fundamental_amp * 0.4

# How much time to show
max_time = 0.0092 # seconds

# Calculate the values 10,000 times per second
time_step = 0.00001 # seconds

# Initialize
time = 0.0
times = []
totals = []
fundamentals = []
firsts = []
seconds = []

while time <= max_time:
# Store the time
times.append(time)

# Compute value each harmonic
fundamental = fundamental_amp * math.sin(2.0 * math.pi * fundamental_freq * time)
first = first_amp * math.sin(2.0 * math.pi * first_freq * time)
second = second_amp * math.sin(2.0 * math.pi * second_freq * time)

# Sum them up
total = fundamental + first + second
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# Store the values
fundamentals.append(fundamental)
firsts.append(first)
seconds.append(second)
totals.append(total)

# Increment time
time += time_step

# Plot the data
fig, ax = plt.subplots(2, 1)

# Show each component
ax[0].plot(times, fundamentals)
ax[0].plot(times, firsts)
ax[0].plot(times, seconds)
ax[0].legend()

# Show the totals
ax[1].plot(times, totals)
ax[1].set_xlabel("Time (s)")

plt.show()

When you run it, you should see a plot of all three sine waves and another plot of their
sum:

Figure 5.3: The output of haronics.py
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5.3.1 Making a sound file

The graph is pretty to look at, but make let’s a file that we can listen to.

The WAV audio file format is supported on pretty much any device, and a library for
writing WAV files comes with Python. Let’s write some sine waves and some noise into
a WAV file.

Create a file called soundmaker.py

import wave
import math
import random

# Constants
frame_rate = 16000 # samples per second
duration_per = 0.3 # seconds per sound
frequencies = [220, 440, 880, 392] # Hz
amplitudes = [20, 125]
baseline = 127 # Values will be between 0 and 255, so 127 is the baseline
samples_per = int(frame_rate * duration_per) # number of samples per sound

# Open a file
wave_writer = wave.open('sound.wav', 'wb')

# Not stereo, just one channel
wave_writer.setnchannels(1)

# 1 byte audio means everything is in the range 0 to 255
wave_writer.setsampwidth(1)

# Set the frame rate
wave_writer.setframerate(frame_rate)

# Loop over the amplitudes and frequencies
for amplitude in amplitudes:

for frequency in frequencies:
time = 0.0
# Write a sine wave
for sample in range(samples_per):

s = baseline + int(amplitude * math.sin(2.0 * math.pi * frequency * time))
wave_writer.writeframes(bytes([s]))
time += 1.0 / frame_rate

# Write some noise after each sine wave
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for sample in range(samples_per):
s = baseline + random.randint(0, 15)
wave_writer.writeframes(bytes([s]))

# Close the file
wave_writer.close()

When you run it, it should create a sound file with several tones of different frequencies
and volumes. Each tone should be followed by some noise.



Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 11)

• [1, 2, 3] · [4, 5,−6] = 4+ 10− 18 = −4

• [π, 2π] · [2,−1] = 2π− 2π = 0

• [0, 0, 0, 0] · [10, 10, 10, 10] = 0+ 0+ 0+ 0 = 0

Answer to Exercise 2 (on page 16)

• [1, 0] · [0, 1] = 0. The angle must be π/2.

• [3, 4] · [4, 3] = 24. |[3, 4]||[4, 3]| cos(θ) = 24. cos(θ) = 24
(5)(5) . θ = arccos( 2425) ≈

0.284 radians.

• [2,−1, 2]·[−1, 2,−2] = 4−2−4 = −2. |[2,−1, 2]| =
√
4+ 1+ 4 =

√
9 = 3. |[−1, 2,−2]| =√

1+ 4+ 4 =
√
9 = 3. 3(3) cos θ = −2. θ = arccos (−2/9) ≈ 1.795 radians.

• [−5, 0,−1]·[2, 3,−4] = −10+0+4 = −6. |[−5, 0, 1]| =
√
25+ 0+ 1 =

√
26. |[2, 3,−4]| =√

4+ 9+ 16 =
√
29.

√
26(

√
29) cos θ = −6. θ = arccos ( −6√

26
√
29
) ≈ 1.791 radians.

51
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Answer to Exercise 3 (on page 32)

0

π
6

π
3

π
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5π
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π
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2

5π
3

11π
6

0 1 2 3
1

2

3

4

Answer to Exercise 4 (on page 37)

1. (0,−2). x = 2 · cos 3π
2 = 2 · 0 = 0 and y = 2 · sin 3π

2 = 2 ·−1 = −2.

2. (−1, 1). x =
√
2 · cos 3π

4 =
√
2 ·−

√
2
2 = 2

2 = −1 and y =
√
2 · sin 3π

4 =
√
2 ·

√
2
2 = 2

2 = 1.

3. ( 3
√
2

2 ,− 3
√
2

2 ). x = 3 · cos−π
4 = 3 ·

√
2
2 = 3

√
2

2 and y = 3 · sin−π
4 = 3 ·−

√
2
2 = − 3

√
2

2 .

4. (− 3
2 ,−

3
√
3

2 ). x = (−3) ·cos π
3 = (−3) · 12 = − 3

2 and y = (−3) ·sin π
3 = (−3) ·

√
3
2 = − 3

√
3

2 .

5. (0,−2). x = 2 · cos−pi
2 = 2 · 0 = 0 and y = 2 · sin−π

2 = 2 ·−1 = −2.

Answer to Exercise 5 (on page 38)

1. (4
√
2, 3π4 ). r =

√
x2 + y2 =

√
32 = 4

√
2. arctan y

x = arctan 4
−4 = arctan−1 = −π

4 +nπ.
We take θ = 3π

4 to satisfy the domain restriction and be in the correct quadrant.

2. (6, π3 ). r =
√

32 +
(
3
√
3
)2

=
√
9+ 27 =

√
36 = 6. arctan 3

√
3

3 = arctan
√
3 = π

3 + nπ.
We take θ = π

3 to satisfy the domain restriction and be in the correct quadrant.
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3. (2, 11π6 ). r =
√√

3
2
+ (−1)2 =

√
3+ 1 = 2. arctan −1√

3
= −π

6 + nπ. We take θ = 11π
6 to

satisfy the domain restriction and have the point in the correct quadrant.

4. (6, π). r =
√

(−6)2 + 02 = 6. arctan 0
−6 = π + nπ. We take θ = π to satisfy the

domain restriction.

5. (2
√
2, 5π4 ). r =

√
(−2)2 + (−2)2 =

√
8 = 2

√
2. arctan −2

−2 = arctan 1 = π
4 + nπ. We

take θ = 5π
4 to satisfy the domain restriction and be in the correct quadrant.

Answer to Exercise ?? (on page 42)

1. r = 3
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2. θ = π Because r includes all real numbers, negative r is possible and the line θ = π

extends in both directions
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3. r = 2 cos θ
2

0
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4. r = −4 sin θ
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5. r = θ (The spiral continues, but is beyond the boundary of the graph)
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Answer to Exercise 7 (on page 45)

A is 440 Hz. Each half-step is a multiplication by 12
√
2 = 1.059463094359295 So the fre-

quency of E is (440)(27/12) = 659.255113825739859
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