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Chapter 1

Atmospheric Pressure

The air you breathe is a blend of gases:

1. 78% nitrogen in the form of N2

2. 21% oxygen in the form O2

3. 1% other gases (mostly argon)

If you fill a balloon with helium (He), the helium will push against the interior of the
balloon with a certain amount of pressure. The pressure is the same at every point in the
interior of the balloon. Pressure, then, is force spread over some area. Force is commonly
measured in newtons. Pressure is measured in pascals. A pascal is 1 newton per square
meter.

We don’t usually think about it, but the air outside the balloon is also pushing against
the exterior of the balloon. We call this barometric pressure or atmospheric pressure, and it is
caused by gravity pulling on the gas molecules above the balloon.

Imagine a square meter on the ground at sea level. Now imagine the column of air above
it — reaching all the way to the top of the atmosphere.
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4 Chapter 1. ATMOSPHERIC PRESSURE

The air inside that column has a mass of about 10,340 kg. One kilogram on the earth
experiences a gravitational force of 9.8 N. So the atmospheric pressure all around you is
about 101,332 pascals. When dealing with such large numbers, we often use kilopascals.
We’d say the barometric pressure at sea level is about 101.3 kPa.

That’s a lot of pressure! Why doesn’t your ribcage collapse crushing your lungs? The air
inside your lungs is the same pressure as the air push on the outside of your rib cage.

This is why we go about our lives relatively oblivious to this huge force that is all around
us — but you can see it sometimes. For example, if you suck the air out of a plastic bottle,
the bottle will be crushed by the barometric pressure.
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1.1 Altitude and Atmospheric Pressure

If you let go of the balloon, as it rises through this column there will be less and less air
mass above it, and thus less and less atmospheric pressure on the outside of the balloon.

What would be the atmospheric pressure at h meters above sea level? Here is a handy
formula for that:

p = 101, 332×
(
1−

(
2.25577× 10−5 × h

))5.25588

where p is the atmospheric pressure in pascals.
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Exercise 1 Atmospheric Pressure

.

You are thinking about riding your bicy-
cle to the top of Mount Everest. You are
worried when the atmospheric pressure
outside the tire drops, the tire will fail.
(I have had a tire fail before; It is very,
very loud.)

Calculate the atmospheric pressure at the
top ofMount Everest (9,144meters above
sea level).

Answer on Page 35

Working Space

1.2 How a Drinking Straw Works

When you suck on a drinking straw, why does the beverage rise? It is actually pushed by
atmospheric pressure.

Before you put your mouth on the straw, the atmospheric pressure is pressing on the
entire surface of the liquid (even inside the straw) evenly. Gravity pulls on the liquid
making the surface level.

When you suck some air out of the straw, the pressure on the surface inside the straw
drops. The atmospheric pressure on the surface outside the straw pushes into the straw
and the beverage rises.
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Of course, gravity is still trying to pull the liquid inside the straw back down. And for
every inch that you lift the liquid in the straw, the force of gravity gets greater, demanding
more suction.

1.2.1 The Longest Usable Straw

Assuming you are drinking water in a place with 100 kPa of atmospheric pressure, how
high could you suck water with a perfect vacuum? That is, given a very, very long and
very, very stiff drinking straw, if you created a pressure of 0 Pa inside, how far above the
surface of the glass could you get the water?

Let’s say a cross-section of the straw has an area of a square meters, and the very top of
the column of water is h meters above the surface in the glass.
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With how many newtons of force is the atmosphere pushing the water upward? 100 kPa
= 100,000 newtons per square meter. So:

Fu = (100, 000)a

With how many newtons of force is gravity pulling the water in the straw downward?
The volume of the water is ah. A cubic meter of liquid water weights 1000 kg. The force
of gravity is 9.8 Newtons per kg.

Fd = (ah)(1000)(9.8)

The water will stop rising when Fu = Fd. So, to find h, we substitute in:

(100, 000)a = (ah)(1000)(9.8)

Notice that we can divide both sides by a getting:



Section 1.2 HOW A DRINKING STRAW WORKS 9

h =
100, 000

9, 800
= 10.2 meters

A perfect vacuum would only be able to drag the water up 10.2 meters.

1.2.2 Millimeters Mercury

The density of mercury is 13,500 kg per cubic meter. How far up a straw would a perfect
vacuum pull mercury?

h =
100, 000

(9.8)(13, 500)
≈ 0.756 meters

When the atmospheric pressure is 100kPa, the mercury will rise 756 mm into a vacuum.

This is actually how scientists measure atmospheric pressure. They have a long glass tube
filled with mercury. One end is closed off and pointed into the sky (exactly opposite the
direction of gravity). The other end is placed into a dish of mercury. There are millimeter
marks on the glass tube.

We use fluctuations in the atmospheric pressure to help us predict the weather. You might
hear a weather nerd with a barometer in their house say, ”Wow, the barometer has gone
from 752 to 761 millimeters mercury in the last hour. A high-pressure system is moving
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in.”

1.3 How Siphon Works

Let’s say you had two cups on a table; one is filled with water, one is empty. And you
connected them with an empty U -shaped straw. Water will not crawl up the empty straw
— the pressure on each end of the straw is the same, and crawling the straw (against
gravity) would require energy.

However, what if the straw were filled with water? Then the force of gravity is pulling
the water on each side of the hump in different directions. However, the side going into
the empty glass pulls a little harder. That is sufficient to create enough suction to pull the
water in the other side up and over the hump.

In turn, this will pull more water. Water will continue to flow from the full glass to the
empty one until their surfaces are at the same level. At this point, the pull of gravity is
the same on each side of the tube.

This is known as a siphon. Notice that atmospheric pressure makes the siphon possible.
When the water on one side is pulled down by gravity, the atmospheric pressure pushes
the other side up. If you were on a planet with plenty of gravity, but no atmosphere, a
siphon wouldn’t work.

A siphon is especially useful when you want to get liquid out of a container that is too big
to pour. For example, if you wanted to take the gasoline out of a car, you could use any
flexible tubing to make a siphon. You would put the hose in the gas tank, suck enough
gas up into the hose to get the siphon going, then put the hose into your jug. (If you ever
do this, be extra careful not to suck any of the gasoline into your mouth; ingesting even a
little bit of gasoline can make you incredibly sick, or even kill you.)
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There are two rules to siphons:

• The peak of the siphon needs to be low enough for atmospheric pressure to push
the liquid that high. For water at sea-level, for example, the peak of the siphon can’t
be more than 10.2 meters above the surface of the source liquid.

• The tube has to carry the liquid to a lower level than the surface of the source liquid.
If the destination end of the siphon is submerged, the surface of the liquid it is
submerged in must be lower than the surface of the source liquid. If the destination
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end of the siphon is not submerged, its opening must be lower than the surface of
the source liquid.

As long as you follow these two rules, your siphons can be very creative. For example,
every toilet has a siphon in it.

1.4 How a Toilet Works

Before we talk about toilets, you should know about P-traps. The drain from every sink,
shower, and toilet in your house curves up and then down. This is known as a P-trap. The
P-trap should always have some water in it. That keeps stinky (and flammable!) gases in
the sewer from coming up and into your house.

If one of your fixtures (especially one that hasn’t been used in a while) smells like raw
sewage, run some water to ensure that the P-trap is full.

Now, back to the toilet! The drain in the bottom of the toilet is connected to a siphon
into the sewer. The siphon is filled with air most of the time. However, when you flush
the toilet, water rushes from the tank into the bowl, which also fills the siphon. Once the
siphon is filled, it pulls water out of the toilet until air starts to enter the siphon. At that
point, the water stops flowing.
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The toilet tank is pretty simple: it has a float and valve that opens with the float is too
low. So, anytime the water-level is too low, the value is open and slowly filling the tank.
This means the tank is nearly always filled with a precise amount of water.

When you flush, a small door in the bottom of the tank is opened and the water rushes
into the bowl. When the water is out, the door closes again so the tank can refill.





Chapter 2

Exponents

Let’s take quick look at exponents. Ancient scientists started coming up with a lot of
formulas that involved multiplying the same number several times. For example, if they
knew that a sphere was r centimeters in radius, its volume in milliliters was

V =
4

3
× π× r× r× r

They did two things to make the notation less messy. First, they decided that if two
numbers were written next to each other, the reader would assume that meant “multiply
them”. Second, they came up with the exponent, a little number that was lifted off the
baseline of the text, that meant “multiply it by itself”. For example 53 was the same as
5× 5× 5.

Now, the formula for the volume of a sphere is written

V =
4

3
πr3

Tidy, right? In an exponent expression like this, we say that r is the base and 3 is the
exponent.

2.1 Identities for Exponents

What about exponents of exponents? What is
(
53
)2?

(
53
)2

= (5× 5× 5)2 = (5× 5× 5)(5× 5× 5) = 56

In general, for any a, b, and c:

(
ab

)c
= a(bc)

If you have
(
53
) (

54
)
, that is just 5× 5× 5× 5× 5× 5× 5 or 57

15
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The general rule is that for any a, b, and c

(
ab

)
(ac) = a(b+c)

Mathematicians love this rule, so we keep extending the idea of exponents to keep this rule
true. For example, at some point, someone asked “What about 50?” According to the rule,
52 must equal 5(2+0) which must equal

(
52
) (

50
)
. Thus, 52 must be 1. So mathematicians

declared “Anything to the power of 0 is 1”.

We don’t typically assume that 00 = 1. It is just too weird. So, we say that for any a not
equal to zero,

a0 = 1

What about 5(−2)? By our beloved rule, we know that
(
5−2

) (
55
)
must be equal to 53,

right? So 5−2 must be equal to 1
52
.

We say that for any a not equal to zero and any b,

a−b =
1

ab

This makes dividing one exponential expression by another (with the same base) easy:

ab

ac
= a(b−c)

We often say “cancel out” for this. Here, we can “cancel out” x2:

x5

x2
= x3

What about 5
1
3 ? By the beloved rule, we know that 5

1
3 5

1
3 5

1
3 must equal 51. Thus, 5

1
3 = 3

√
5.

We say that for any a and b not equal to zero and any c greater than zero,

a
b
c = ab c

√
a
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Before you go on to the exercises, note that the beloved rule demands a common base.

• We can combine these:
(
52
) (

54
)
= 56

• We cannot combine:
(
52
) (

35
)

With that said, we note for any a,b, and c:

(ab)c = (ac) (bc)

So, for example, if Iwe were asked to simplify
(
34
) (

62
)
, we would note that 6 = 2× 3, so

(
34
)(

62
)
=

(
34
)(

32
)(

22
)
=

(
36
)(

22
)

If these ideas are new to you (or maybe you are just having trouble remembering them),
watch the Khan Academy’s Intro to rational exponents video at https://youtu.be/
lZfXc4nHooo.

https://youtu.be/lZfXc4nHooo
https://youtu.be/lZfXc4nHooo




Chapter 3

Exponential Decay

In a previous chapter, we saw that an investment of P getting compound interest with an
annual interest rate of r, grows exponentially. At the end of year t, your balance would
be

P (1+ r)t

Because r is positive, this number grows as time passes. You get a nice exponential growth
curve that looks something like this:

This is $30 invested with a 10% annual interest rate. So, the formula for the balance after
t years would be

(30)(1.1)t

What if r were negative? This would be exponential decay.
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3.1 Radioactive Decay

Until around 1970, there were companies making watches whose faces and hands were
coated with radioactive paint. The paint usually contained radium. When a radium atom
decays, it gives off some energy, loses two protons and two neutrons, and becomes be-
comes a different element (radon). Some of the energy given off is visible light. Thus,
these watches glow in the dark.

How many of the radium atoms in the paint decay each century? About 4.24%.

Notice the quantity of atoms lost is proportional to the number of atoms you have. This is
exponential decay. If we assume that we start with a million radium atoms, the number
of atoms decreases over time like this:

• We start with 1,000,000 atoms.

• At 16 centuries, we have only 500,000 (half as many) left.

• 16 centuries after that, we have only 250,000 (half again) left.

• 16 centuries after that, we have only 125,000 (half again) left.

A nuclear chemist would say that radium has a half-life of 1,600 years. Note that this
means that if you bought a watch with glowing hands in 1960, it will be glowing half as
brightly in the year 3560.

How do we calculate the amount of radium left at the end of century t? If you start with
P atoms, at the end of the t-th century, you will have
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P (1− 0.0424)t

This is exponential decay.

3.2 Model Exponential Decay

Let’s say you get hired to run a company with 480,000 employees. Each year, 1/8 of your
employees leave the company for one reason or another (retirement, quitting, etc.). For
some reason, you never hire any new employees.

Make a spreadsheet that indicates how many of the original 480,000 employees will still
be around at the end of each year for the next 12. Next, make a bar graph from that data.





Chapter 4

Logarithms

After the world created exponents, it needed the opposite. We could talk about the quan-
tity ? = 23, that is, “What is the product of 2 multiplied by itself three times?” We needed
some way to talk about 2? = 8, that is, “2 to the what is 8?” This is why we developed the
logarithm.

Here is an example:

log2 8 = 3

In English, you would say, “The logarithm base 2 of 8 is 3.”

The base (2, in this case) can be any positive number. The argument (8, in this case) can
also be any positive number.

Try this one: What is the logarithm base 2 of 1/16?

You know that 2−4 = 1
16 , so log2

1
16 = −4.

4.1 Logarithms in Python

Most calculators have pretty limited logarithm capabilities, but python has a nice log
function that lets you specify both the argument and the base. Start python, import the
math module, and try taking a few logarithms:

>>> import math
>>> math.log(8,2)
3.0
>>> math.log(1/16, 2)
-4.0

Let’s say that a friend offers you 5% interest per year on your investment for as long as
you want. You wonder, “How many years before my investment is 100 times as large?”
You can solve this problem with logarithms:

>>> math.log(100, 1.05)

23
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94.3872656381287

If you leave your investment with your friend for 94.4 years, the investment will be worth
100 times what you put in.

4.2 Logarithm Identities

The logarithm is defined this way:

logb a = c ⇐⇒ bc = a

Notice that the logarithm of 1 is always zero, and logb b = 1.

The logarithm of a product:

logb ac = logb a+ logb c

This follows from the fact that ba+c = babc. What about a quotient?

logb
a

c
= logb a− logb c

Exponents?

logb (a
c) = c logb a

Notice that because logs and exponents are the opposite of each other, they can cancel
each other out:

blogb a = a

and

logb (b
a) = a
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4.3 Changing Bases

We mentioned that most calculators have pretty limited logarithm capabilities. Most cal-
culators don’t allow you to specify what base you want to work with. All scientific calcu-
lators have a button for “log base 10”. So, you need to know how to use that button to
get logarithms for other bases. Here is the change-of-base identity:

logb a =
logc a
logc b

For example, if you wanted to find log2 8, you would ask the calculator for log10 8, then
divide that by log10 2. You should get 3.

4.4 Natural Logarithm

When you learn about circles, you are told that the circumference of a circle is about
3.141592653589793 times its diameter. Because we use this unwieldy number a lot, we
give it a name: We say “The circumference of a circle is π times its diameter.”

There is a second unwieldy number that we will eventually use a great deal in solving
problems. It is about 2.718281828459045 (but the digits actually go on forever, just like π).
We call this number e. (We are not going to talk about why e is special quite yet, but we
will soon.)

Most calculators have a button labeled “ln”. That is the natural logarithm button. It takes
the log in base e.

Similarly, in python, if you don’t specify a base, the logarithm is done in base e:

>>> math.log(10)
2.302585092994046
>>> math.log(math.e)
1.0

4.5 Logarithms in Spreadsheets

Spreadsheets have three log functions:

• LOG takes both the argument and the base. LOG(8,2) returns 3.

• LOG10 takes just the argument and uses 10 as the base.
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• LN takes just the argument and uses e as the base.

Here is a plot from a spreadsheet of a graph of y = LOG(x, 2).

Spreadsheets also have the function EXP(x), which returns ex. For example, EXP(2) re-
turns 7.38905609893065.



Chapter 5

Trigometric Functions

As mentioned in an earlier chapter, in a right triangle where one angle is θ, the sine of θ
is the length of the side opposite θ divided by the length of the hypotenuse.

The sine function is defined for any real number. We treat that real number θ as an angle,
we draw a ray from the origin out to the unit circle. The y value of that point is the sine.
For example, the sin( 4π3 ) is −

√
3/2 (see figure 5.1).

x

y

1

θ = 4π
3 radians = 240◦

sin(θ) = −
√
3/2

Figure 5.1: sin 4π
3 = −

√
3

2

(Note that in this section, we will be using radians instead of degrees unless otherwise
noted. While degrees are more familiar to most people, engineers and mathematicians
nearly always use radians when solving problems. Your calculator should have a radians
mode and a degrees mode; you want to be in radians mode.)

Similarly, we define cosine using the unit circle. To find the cosine of θ, we draw a ray
from the origin at the angle θ. The x component of the point where the ray intersects the
unit circle is the cosine of θ (shown in figure 5.2).

From this description, it is easy to see why sin(θ)2 + cos(θ)2 = 1. They are the legs of a
right triangle with a hypotenuse of length 1.

It should also be easy to see why sin(θ) = sin(θ+2π): Each time you go around the circle,
you come back to where you started.

27
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x

y

1

θ = 4π
3 radians = 240◦

cos(θ) = −1
2

Figure 5.2: cos 4π
3 = −1

2

Can you see why cos(θ) = sin(θ+ π/2)? Turn the picture sideways.

5.1 Graphs of sine and cosine

Here is a graph of y = sin(x):

−1

−1/2

1/2

1

−2π − 3π
2

−π −π
2

π
2

π 3π
2

2π
x

y

It looks like waves, right? It goes forever to the left and right. Remembering that cos(θ) =
sin(θ+ π/2), we can guess what the graph of y = cos(x) looks like:

−1

−1/2

1/2

1

−2π − 3π
2

−π −π
2

π
2

π 3π
2

2π
x

y
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5.2 Plot cosine in Python

Create a file called cos.py:

import numpy as np
import matplotlib.pyplot as plt

until = 8.0

# Make a plot of cosine
thetas = np.linspace(0, until, 32)
cosines = []
for theta in thetas:

cosines.append(np.cos(theta))

# Plot the data
fig, ax = plt.subplots()
ax.plot(thetas, cosines, 'r.', label="Cosine")
ax.set_title("Cosine")
plt.show()

This will plot 32 points on the cosine wave between 0 and 8. When you run it, you should
see something like this:
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5.3 Derivatives of trigonometic functions

Here is a wonderful property of sine and cosine functions: At any point θ, the slope of
the sine graph at θ equals cos(θ).

For example, we know that sin(4π/3) = −(1/2)
√
3 and cos(4π/3) = −1/2. If we drew a

line tangent to the sine curve at this point, it would have a slope of -1/2:

−3/2

−1

−1/2

1/2

1

−π
2

π
2

π 3π
2

2π
x

y

slope = -1/2

We say “The derivative of the sine function is the cosine function.”

Can you guess the derivative of the cosine function? For any θ, the slope of the graph of
the cos(θ) is − sin(θ).

Exercise 2 Derivatives of Trig Functions Practice 1

.Use the limit definition of a derivative to
show that d

dx cos x = − sin x

Answer on Page 35

Working Space

The derivatives of all the trigonometric functions are presented below:

d
dx sin x = cos x d

dx csc x = − csc x · cot x
d
dx cos x = − sin x d

dx sec x sec x · tan x
d
dx tan x = sec2 x d

dx cot x = − csc2 x

Example: Find the derivative of f(x) if f(x) = x2 sin x Solution: Using the product rule,
we find that:

d

dx
f(x) = (x2)

d

dx
(sin x) + (sin x)

d

dx
(x2)
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Taking the derivatives:
= x2(cos x) + 2x(sin x)

Exercise 3 Derivatives of Trig Functions 2

.Find the derivative of the following func-
tions:

1. f(x) = sec x
1+tan x

2. y = sec t tan t

3. f(θ) = θ
4−tan θ

4. f(t) = 2 sec t− csc t

5. f(θ) = sin θ
1+cos θ

6. f(x) = sin x cos x

Answer on Page 36

Working Space

5.4 A weight on a spring

Let’s say you fill a rollerskate with heavy rocks and attach it to the wall with a stiff spring.
If you push the skate toward the wall and release it, it will roll back and forth. Engineers
would say “The skate will oscillate.”

Intuitively, you can probably guess:

• If the spring is stronger, the skate will oscillate more times per minute.

• If the rocks are lighter, the skate will oscillate more times per minute.

The force that the spring exerts on the skate is proportional to how far its length is from
its relaxed length. When you buy a spring, the manufacturer advertises its “spring rate”,
which is in pounds per inch or newtons per meter. If a spring has a rate of 5 newtons per
meter, that means that if you stretch or compress it 10 cm, it will push back with a force
of 0.5 newtons. If you stretch or compress it 20 cm, it will push back with a force of 1
newton.
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Let’s write a simulation of the skate-on-a-spring. Duplicate cos.py, and name the new
copy spring.py. Add code to implement the simulation:

import numpy as np
import matplotlib.pyplot as plt

until = 8.0

# Constants
mass = 100 # kg
spring_constant = -1 # newtons per meter displacement
time_step = 0.01 # s

# Initial state
displacement = 1.0 # height above equilibrium in meters
velocity = 0.0
time = 0.0 # seconds

# Lists to gather data
displacements = []
times = []

# Run it for a little while
while time <= until:

# Record data
displacements.append(displacement)
times.append(time)

# Calculate the next state
time += time_step
displacement += time_step * velocity
force = spring_constant * displacement
acceleration = force / mass
velocity += acceleration

# Make a plot of cosine
thetas = np.linspace(0, until, 32)
cosines = []
for theta in thetas:

cosines.append(np.cos(theta))

# Plot the data
fig, ax = plt.subplots()
ax.plot(times, displacements, 'b', label="Displacement")
ax.plot(thetas, cosines, 'r.', label="Cosine")
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ax.set_title("Weight on Spring vs. Cosine")
ax.set_xlabel("Time (s)")
ax.set_ylabel("Displacement (m)")
ax.legend()
plt.show()

When you run it, you should get a plot of your spring and the cosine graph on the same
plot.

The position of the skate is following a cosine curve. Why?

Because a sine or cosine waves happen whenever the acceleration of an object is propor-
tional to -1 times its displacement. Or in symbols:

a ∝ −p

where a is acceleration and p is the displacement from equilibrum.

Remember that if you take the derivative of the displacement, you get the velocity. And
if you take the derivative of that, you get acceleration. So, the weight on the spring must
follow a function f such that

f(t) ∝ −f ′′(t)
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Remember that the derivative of the sin(θ) is cos(θ).

And the derivative of the cos(θ) is − sin(θ)

These sorts of waves have an almost-magical power: Their acceleration is proportional to
-1 times their displacement.

Thus, sine waves of various magnitudes and frequencies are ubiquitous in nature and
technology.

5.5 Integral of sine and cosine

If we take the area between the graph and the x axis of the cosine function (and if the
function is below the x axis, it counts as negative area), from 0 to 4π/3, we find that it is
equal to −(1/2)

√
3.

−1

−1/2

1/2

1

−π
2

π
2

π 3π
2

2π
x

y

area=−(1/2)
√
3

We say “The integral of the cosine function is the sine function.”

5.5.1 Integrals of Trig Functions Practice

Exercise 4

.Evaluate the following integrals:

1.
∫
sec x tan xdx

Answer on Page 36

Working Space



Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 6)

p = 101, 332×
(
1− 2.25577× 10−5 × h

)5.25588

and h = 9, 144. Thus,

p ≈ 30.1kPa

Answer to Exercise 2 (on page 30)

We start by writing out the limit:

d

dx
cos x = lim

h→0

cos x+ h− cos x
h

Applying the sum formula for cos(x+ h), we get:

= lim
h→0

cos x cosh− sin x sinh− cos x
h

Rearranging to group the cos x and applying the Difference Rule:

= lim
h→0

cos x cosh− cos x
h

− lim
h→0

sin x sinh

h

Applying the Constant Multiple Rule:

= cos x lim
h→0

cosh− 1

h
− sin x lim

h→0

sinh

h
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Recalling that limh→0
sinh
h = 1,

= cos x lim
h→a

cosh− 1

h
− sin x · 1

Recalling that limh→0
cosh−1

h = 0:

= cos x · 0− sin x = − sin x

Therefore, d
dx cos x = − sin x

Answer to Exercise 3 (on page 31)

1. sec x(tan x−1)
(1+tan x)2

2. sec t[sec2 t+ tan2 t]

3. 4−tan θ+θ sec2 θ
(4−tan θ)2

4. 2 sec t tan t+ csc t cot t

5. 2
(1+cos θ)2

6. cos2 x− sin2 x

Answer to Exercise 4 (on page 34)

1. sec x+ C
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