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CHAPTER |

Solving Quadratics

A quadratic function has three terms: ax?4+bx+c. a, b, and ¢ are known as the coeffcients.
The coefficients can be any constant, except that a can never be zero. (If a is zero, it is a
linear function, not a quadratic.)

When you have an equation with a quadratic function on one side and a zero on the other,

you have a quadratic equation. For example:

72x* —12x+1.2=0

How can you find the values of x that will make this equation true?
You can always reduce a quadratic equation so that the first coefficient is 1, so that your

equation looks like this:

x> +bx+c=0

For example, if you are asked to solve 4x? + 8x — 19 = —2x* —7

A2 +8x—19 = —2x2 —7
6x2+8x—12=0

4
X2+§X—2:O

Here, b = % and ¢ = —2.

x2 4+ bx + ¢ = 0 when

What does this mean?

For any b and c, the graph of x* + bx + c is a parabola that goes up on each end. Its low
point is at x = —%.

If there are no real roots (b? —4c < 0), which means the parabola never gets low enough

3



4 Chapter 1. SOLVING QUADRATICS

to cross the x-axis:

Y x2—2x+3

X

05 05 1 15 2 25

If there is one real root (b? — 4c = 0), it means that the parabola only touches the x-axis.

X2 —dx +4

i 2 3

If there are two real roots (b2 —4c > 0), it means that the parabola crosses the x-axis twice
as it dips below and then returns:
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y
4,,
X? —4x +4
2,,
o _x
12 3
_2)( :

Exercise 1 Roots of a Quadratic
‘— Working Space

In the last chapter, you found that the
function for the height of your flying ham-
mer is:

1
p= —E‘?.St2 +12t42

At what time will the hammer hit the
ground?

\— Answer on Page 33

1.1 The Traditional Quadratic Formula

If the last explanation was a little tricky to understand, the quadratic formula is a nifty
tool.

The Quadratic Formula

ax? + bx + ¢ = 0 when

— —b + vb?2 —4ac
- 2a







CHAPTER 2

Complex Numbers

Complex numbers are an extension of real numbers, which in turn are an extension of
rational numbers. In mathematics, the set of complex numbers is a number system that
extends the real number line to a full two dimensions, using the imaginary unit, which is
denoted by 1, with the property that i* = —1.

2.1 Definition

A complex number is a number of the form a + bi, where a and b are real numbers, and
i is the imaginary unit, with the property that i = —1. The real part of the complex
number is a, and the imaginary part is b.

2.2 Why Are Complex Numbers Necessary?

Complex numbers are essential to many fields of science and engineering. Here are a few
reasons why:

2.21 Roots of Negative Numbers

In the real number system, the square root of a negative number does not exist, because
there is no real number that you can square to get a negative number. The introduction of
the imaginary unit i, which has the property that i* = —1, allows us to take square roots
of negative numbers and gives rise to complex numbers.

2.2.2 Polynomial Equations

The fundamental theorem of algebra states that every non-constant polynomial equation
with complex coefficients has a complex root. This theorem guarantees that polynomial
equations of degree n always have n roots in the complex plane.
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2.2.3 Physics and Engineering

In physics and engineering, complex numbers are used to represent waveforms in control
systems, in quantum mechanics, and many other areas. Their properties make many
mathematical manipulations more convenient.

2.3 Adding Complex Numbers

The addition of complex numbers is straightforward. If we have two complex numbers
z1 = a+ biand z; = ¢ + di, their sum is defined as:

z1+z=(a+c)+ (b+d)i (2.1)

In other words, you add the real parts to get the real part of the sum, and add the imagi-
nary parts to get the imaginary part of the sum.
2.4 Multiplying Complex Numbers

The multiplication of complex numbers is a bit more involved. If we have two complex
numbers z; = a + bi and z; = ¢ + di, their product is defined as:

z1-z2=(a+bi):(c+di) = ac+ adi+ bci—bd = (ac — bd) + (ad + be)i (2.2)

Note the last term comes from i = —1. You multiply the real parts and the imaginary

parts just as you would in a binomial multiplication, and remember to replace i* with —1.



CHAPTER 3

Introduction to Sequences

A sequence is a list of numbers in a particular order. {1, 3, 5, 7, 9} is a sequence. So is {%,
%, %, .-+ }. There are many types of sequences. We will present two of the most common
types in this chapter: arithmetic and geometric sequences.

Sequences are generally represented like this:

a1, a2y A3y 04y euy Any o

The first number, ay, is called the first term, a, is the second term, and an, is the nth term.
A sequence can be finite or infinite. If the sequence is infinite, we represent that with
ellipses (---) at the end of the list, to indicate that there are more numbers.

We can also write formulas to represent a sequence. Take the first example, the finite
sequence {1, 3, 5, 7, 9}. Notice that each term is two more than the previous term. We
can define the sequence recursively by defining the n'" term as a function of the (n —1)t"
term. In our example, we see that a,, = a,—1 +2 with aj =1 for T <n < 5. This is called
a recursive formula, because you have to already know the (n — 1) term to find the n'"
term.

Another way to write a formula for a sequence is to find a rule for the n'' term. In our
example sequence, the first term is 1 plus O times 2, the second term is 1 plus 1 times 2,
the third term is 1 plus 2 times 2, and so one. Did you notice the pattern? The n'" term
is 1 plus (n-1) times 2. We can write this mathematically:

an=14+2n—T)forT<n<5

This is called the explicit formula because each term is explicitly defined. Notice that for
the second way of writing a formula, we don’t have to state what the first term is — the
formula tells us.

3.1 Arithemtic sequences

Our first example sequence, {1, 3, 5, 7, 9} is a finite, arithmetic sequence. We know it is
finite because there is a limited number of terms in the sequence (in this case, 5). How
do we know it is arithmetic?
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An arithmetic sequence is one where you add the same number every time to get the
next term. Our example is an arithmetic sequence because you add 2 to get the next
term every time. That number that you add is called the common difference, so we can say
the sequence {1, 3, 5, 7, 9} has a common difference of 2. The common difference can
be positive (in the case of an increasing arithmetic sequence) or negative (in the case of
a decreasing arithmetic sequence). Formally, we can find the common difference of an
arithmetic sequence by subtracting the (n — 1)™" term from the n'"* term:

d= an — Qn-1

Exercise 2

. ] . ] Working Space
Which of the following are arithmetic se-

quences? For the arithmetic sequences,
find the common difference.

—_

A2 i e 5
. {5,8,11,14,17, ..}
. {3,-1,-5,9, ...}
. {-1,2,-3,4,-5,6, ...}

; Answer on Page 33 4

3.1.1 Formulas for arithmetic sequences

If you are given an arithmetic sequence, you can write an explicit or recursive formula.
You can think of the formula as a function where the domain (input) is restricted to
integers greater than or equal to one. Let’s write explicit and recursive formulas for the
sequence {3, -1, -5, -9, ...}.

For either type of formula, we need to identify the common difference. Since each term
is 4 less than the previous term, the common difference is -4 (see figure 3.1). This means
the n'" term is the (n — 1)™ term minus 4. The general form of a recursive formula is
an = an_1+d, where d is the common difference. For our example, the common difference
is -4, so we can write a recursive formula:

an =an_1 —4
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However, this formula doesn't tell us what a; is! For recursive formulas, you have to
specify the first term in the sequence. So, the complete recursive formula for the sequence
is:

an = an_1 —4

a) = 3
/4\/4\/4\
A4 T ® T *® T L4

-9 —7 -5 -3 —1 1 3

Figure 3.1: The common difference in the sequence {3, -1, -5, -9,...} is -4

Recursive formulas make it easy to see how each term is related to the next term. However,

it is difficult to use recursive formulas to find a specific term. Say we wanted to know the
7" term in the sequence. Well, from the formula, we know that:

(17:(16—4

What is ag? Again, we see that

ag=as—4

Now we have to find as! If we keep going, we see that:

(15:(14—4
a4:a3—4
CL3:C12—4
(12:(11—4

Since we were told aj, we can find a; and propagate our terms back up the chain to find
ayz:
a=3—4=-1
az=a—4=—-1-4=-5
(14:(13—4:—5—4:—9
as :a4—4:—9—4:—13
ag = (15—4:—13—4:—17
a;=ag—4=—-17—4=-21

Ultimately, we see that a; = —21. That was a lot of work! You can imagine that for higher
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n terms, such as the 100" or 1000t" term, this method becomes cumbersome. This is
where the explicit formula is more useful.

The general form of an explicit formula for an arithmetic sequence is

an=a;+dx (n—1)

where d is the common difference. For our example sequence, {3, -1, -5, -9, ...}, the
common difference is —4. So the explicit formula is

an=3+(—4)n—-1)=3—-4n-1)

You may be tempted to distribute and simplify, which is fine and yields an equivalent
formula:
an=7—4n

Now, to find the 7t" term, all we have to do is substitute n = 7:

a7 =3—47—-1)=3—-4(6) =3 —-24=-21
We get the same answer with much less effort!

Exercise 3

) . ) ) Working Space
An arithmetic sequence is defined by the

recursive formula a, = an_1 + 5 with
a; = —4. Write the first 5 terms of the
sequence and determine an explicit for-
mula for the same sequence.

; Answer on Page 33 4
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Exercise 4
) ) _ Working Space
The first four terms of an arithmetic se-
quence are {7, 37”, 27, 5—“} What is the
common difference? Write explicit and
recursive formulas for the infinite sequence.

Answer on Page 34 4

3.2 Geometric sequences

, %, --- }. How is each term related to the previous term? Well, % is half of 1, and ]g is half

of 1, so each term is the previous term multiplied by J. When each term in a sequence is
a multiple of the previous term, this is a geometric sequence. The number we multiply by
each time (in our example, this is %), which is called the common ratio. The common ratio
can be positive or negative, but not zero.

Let’s look at the other sequence given as an example at the beginning of the chapter: {3,
1
7

An easy way to determine the common ratio (r) is to divide the n'" term by the (n —1)'"
term. In our example sequence, the first term is 12 and the second is %.

a _1/4 1

a  1/27 2

which returns the common ratio we already identified, r = %

If the common ratio is negative, then the sequence will “flip” back and forth from positive
to negative. For example, suppose there is a geometric sequence such that a; = 1 and
r = —2. Then the first 5 terms are {1, -2, 4, -8, 16}. Whenever you see a sequence going
back and forth from positive to negative, that means the common ratio is negative.

For positive common ratios, if v > 1, then the sequence is increasing. And if r < 1, the
sequence is decreasing.
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3.2.1 Formulas for geometric sequences

Like arithmetic sequences, we can write recursive and explicit formulas. For geometric
sequences, the recursive formula has the general form:

an =T1(an_1 )

where r is the common ratio and a; is specified. For our example sequence, {12, %, %, e},
the recursive formula is:

1

5 an—1

anzz

a—l
L)

In a geometric sequence, each term is the first term, a;, multiplied by the common ratio,
r, n — 1 times. Therefore, the general form of an explicit formula for a geometric function
is:

an = (ag )rnil

Again, for our example sequence, a; = 3 and T = J, so the explicit formula is:

1.1
3G

(n=1)
7)

an:(

Exercise 5

_ . ) Working Space
Which of the following are geometric se-

quences? For each geometric sequence,
determine the common ratio.

1. {2,4,6,-8,..}
2. {4,2,1, 3, ..}
3. {-5, 25, -125, 525, ...}
4. {2,0,-2,4,..}

; Answer on Page 34 4



Exercise 6

A geometric sequence is defined by the
recursive formula a, = ap_1 X % with
a; = 1. Write the first five terms of the
sequence and determine an explicit for-
mula for the same sequence.

Exercise 7

The first four terms of a geometric se-
quence are {-4, 2, -1, %} What is the
common ratio? Write recursive and ex-
plicit formulas for the infinite sequence.

Section 3.2 GEOMETRIC SEQUENCES 15

Working Space

Answer on Page 34

Working Space

o

Answer on Page 34

R






CHAPTER 4

Vectors

We have talked a some about forces, but in the calculations that we have done, we have
only talked about the magnitude of a force. It is equally important to talk about its direc-
tion. To do the math on things with a magnitude and a direction (like forces), we need
vectors.

For example, if you jump out of a plane (hopefully with a parachute), several forces
with different magnitudes and directions will be acting upon you. Gravity will push
you straight down. That force will be proportional to your weight. If there were a wind
from the west, it would push you toward the east. That force will be proportional to
the square of the speed of the wind and approximately proportional to your size. Once
you are falling, there will be resistance from the air that you are pushing through — that
force will point in the opposite direction from the direction you are moving and will be
proportional to the square of your speed.

wind

To figure out the net force (which will tell us how we will accelerate), we will need to
add these forces together. To do this, we need to learn to do math with vectors.

17



18 Chapter 4. VECTORS
4.1 Adding Vectors

A vector is typically represented as a list of numbers, with each number representing a
particular dimension. For example, if you are creating a 3-dimensional vector representing
a force, it will have three numbers representing the amount of force in each of the three
axes. For example, if a force of one newton is in the direction of the x-axis, you might
represent the vector as v = [1,0,0]. Another vector might be u = [0.5,0.9,0.7] . You can
see examples of 2-dimensional and 3-dimensional vectors in figures 4.1 and 4.2.

6 =
Yy
4+
u=[2,3]
24
v =1[4,1]
It It It It It X\
1 2 3 4 5 6

Figure 4.1: 2-dimensional vectors, u and v

X

Figure 4.2: 3-dimensional vectors, u and v
Thinking visually, when we add to vectors, we put the starting point second vector at the
ending point of the first vector. This is illustrated for 2-dimensional vectors in figure 4.3

and for 3-dimensional vectors in figure 4.4.

If you know the vectors, you will just add them element-wise:

u+v=1[0.5,0.9,0.7] + [1.0,0.0,0.0] = [1.5,0.9.0.7]
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6 =

Y
4 v=[41]

/( —————
u=1[2,3 T+ v

21 o

/, ‘ ‘ ‘ ‘ ‘ X ‘

1 2 3 4 5 6

Figure 4.3: A visual representation of adding 2-dimensional vectors, u and v

Figure 4.4: A visual representation of adding 3-dimensional vectors, u and v
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These vectors have 3 components, so we say they are 3-dimensional. Vectors can have any
number of components. For example, the vector [—12.2,3, 7, 10000] is 4-dimensional.

You can only add two vectors if they have the same dimension.

(12,—4] + [-1,5] = [11,1]

Addition is commutative; if you have two vectors a and b, then a+b is the same as b+ a.

Addition is also associative: If you have three vectors a, b, and ¢, it doesn’t matter which
order you add them in. Thatis, a+ (b+c) = (a+b) +c.

A 1-dimensional vector is just a number. We say it is a scalar, not a vector.

Exercise 8 Adding vectors
Working S
Add the following vectors: orHg Space
o [1,2,3] +[4,5,6]
o [1,-2,-3,-4]+[4,5,6,7]
e [m,0,0] + [0,71,0] + (0,0, 7]

; Answer on Page 34 4

Exercise 9 Adding Forces

You are adrift in space, near two dif- Working Space
ferent stars. The gravity of one star is

pulling you towards it with a force of

[4.2,5.6,9.0] newtons. The gravity of the

other star is pulling you towards it with

a force of [—100.2, 30.2, —9.0] newtons. What

is the net force?

; Answer on Page 34 4
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3u

Figure 4.5: To subtract vectors, you reverse the vector that is being subtracted

4.2 Multiplying a vector with a scalar

It is not uncommon to multiply a vector by a scalar. For example, a rocket engine might
have a force vector v. If you fire 9 engines in the exact same direction, the resulting force
vector would be 9v.

Visually, when we multiply a vector u by a scalar a, we get a new vector that goes in the
same direction as u but has a magnitude a times as long as u. A visual is presented in
tigure 4.5.

When you multiply a vector by a scalar, you simply multiply each of the components by

the scalar:

3% [0.5,0.9,0.7] = [1.5,2.7, 3.6]
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Exercise 10 Multiplying a vector and a scalar

L ) . —— Working Space
Simplify the following expressions: ‘

o 2x[1,2,3]
o [—1,-2,-3,—4] x =2

e T[T, 271, 371

; Answer on Page 35 4

Note that when you multiply a vector times a negative number, the new vector points in
the opposite direction (see figure 4.6).

Figure 4.6: Multiplying a vector by a negative number reverses the direction of the vector.

4.3 Vector Subtraction

As you might guess, when you subtract one vector from another, you just do element-wise
subtraction:

[4,2,0] —[3,—-2,9] = [1,4,—9]

So,u—v=u+(—1v).

Visually, you reverse the one that is being subtracted (see figure 4.7):
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Figure 4.7: To subtract a vector, you reverse it, then add the reversed vector.

4.4 Magnitude of a Vector

The magnitude of a vector is just its length. We write the magnitude of a vector v as [v|.

We compute the magnitude using the pythagorean theorem. If v = [3,4, 5], then

v = /32442 + 52 =+/50 ~ 7.07

(You might notice that the notation for the magnitude is exactly like the notation for
absolute value. If you think of a scalar as a 1-dimensional vector, the absolute value and
the magnitude are the same. For example, the absolute value of -5 is 5. If you take the
magnitude of the one-dimensional vector [—5],you get v/25 = 5.)

Where does this equation come from? Consider a 2-dimensional vector, v = [3,4]. This
means the the vector represents 3 units in the x-direction, and 4 units in the y-direction.
We can then visualize a right triangle, with the vector being the hypotenuse and the legs
being the x- and y-components of the vector (see figure 4.8). As you recall, the length of
the hypotenuse of a right triangle is the square root of the sum of the squares of the legs.

That is:
c=+va2+b?

Where c is the length of the hypotenuse and a and b are the lengths of the legs.

We won't prove it here, but this method holds for higher-dimension vectors as well.

Magnitude of Vectors

For an n-dimensional vector, v = [x1,%2,%3, - ,Xn], the magnitude of the vector is
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X-component

Juouodwod-A

>
d

4 5

O

12
Figure 4.8: The magnitude of a vector can be thought of as the length of a hypotenuse of
a right triangle.

given by:

|V|:\/X%+X%+X§+"'+X%

Notice that if you scale up a vector, its magnitude scales by the same amount. For example:

73,4,5]| = 7V50 = 7 x 7.07
Here is why that is true. Suppose we have a vector, u = [a, b, c]. Then the magnitude of

u is given by:
lu| = Va2 + b2 +c?

If we scale u to create v such that v = ku = [ka, kb, kc], where k is some constant. Then
the magnitude of v is given by:

vl =/ (ka)2 + (kb)? + (ke)?

We can expand and simplify this equation:

v = vVk2a2 + kK2b2 + K2c2

vl = /K2 (a2 + b2 + )
v| = (x/l?) Va2 + b2+ ¢?
vl = k| vV a? + b% + ¢ = [k] |ul



Section 4.5 VECTORS IN PYTHON 25

So, if you scale a vector, the magnitude of the resulting vector is the absolute value of the
scale factor times the magnitude of the original vector.

The rule then is: If you have any vector v and any scalar k:

kv| = [k[[v]

Exercise 11 Magnitude of a Vector

) ) . —— Working Space
Find the magnitude of the following vec- ‘

tors:

o [1,1,1]

e [—5,—5,—5] (thatis the same as —5x
[1,7,10)

o [3,4,—4] +[—2,-3,5]

; Answer on Page 35 4

4.5 Vectors in Python

NumPy is a library that allows you to work with vectors in Python. You might need to
install it on your computer. This is done with pip. pip3 installs things specifically for
Python 3.

pip3 install NumPy

We can think of a vector as a list of numbers. There are also grids of numbers known as
matrices. NumPy deals with both in the same way, so it refers to both of them as arrays.

The study of vectors and matrices is known as Linear Algebra. Some of the functions we
need are in a sublibrary of NumPy called 1inalg.

As a convention, everyone who uses NumPy, imports it as np.

Create a file called first_vectors.py:
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import NumPy as np

# Create two vectors
np.array([2,3,4])

u = np.array([-1,-2,3])
print(f"u = {u}, v = {v}")

A%

# Add them
w=v+u
print(f"u + v = {w}")

# Multiply by a scalar
w=v *3
print(f"v * 3 = {w}")

# Get the magnitude

# Get the magnitude

mv = np.linalg.norm(v)

mu = np.linalg.norm(u)
print(f"|v| = {mv}, lul = {mu}")

When you run it, you should see:

> python3 first_vectors.py

u=[-1-2 3], v=1[234]

u+tv=1_[11T7]

v [ 6 9 12]

| .385164807134504, |ul = 3.7416573867739413

*
- w
oo

4.5.1 Formatting Floats

The numbers 5.385164807134504 and 3.7416573867739413 are pretty long. You probably
want them rounded off after a couple of decimal places.

Numbers with decimal places are called floats. In the placeholder for your float, you can
specify how you want it formatted, including the number of decimal places.

Change the last line to look like this:
print(£"|vl| = {mwv:.2f}, |ul = {mu:.2f}")

When you run the code, it will be neatly rounded off to two decimal places:
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|vl = 5.39, |ul = 3.74






CHAPTER 5

Momentum

Let’s say a 2 kg block of putty is flying through space at 5 meters per second, and it
collides with a larger 3 kg block of putty that is not moving at all. When the two blocks
deform and stick to each other, how fast will the resultant big block be moving?

Every object has momentum. The momentum is a vector quantity — it points in the direc-
tion that the object is moving and has a magnitude equal to its mass times its speed.

Given a set of objects that are interacting, we can sum all their momentum vectors to get
the total momentum. In such a set, the total momentum will stay constant.

In our example, one object has a momentum vector of magnitude of 10 kg m/s, the other
has a momentum of magnitude 0. Once they have merged, they have a combined mass
of 5 kg. This means the velocity vector must have magnitude 2 m/s and pointing in the
same direction that the first mass was moving.

29
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Exercise 12 Cars on Ilce

. . ) Working Space
A car weighing 1000 kg is going north

at 12 m/s. Another car weighing 1500
kg is going east at 16 m/s. They both hit
a patch of ice (with zero friction) and
collide. Steel is bent, and the two ob-
jects become one. How what is the ve-
locity vector (direction and magnitude)
of the new object sliding across the ice?

?2m/s
1500 kg
?2m/s
16 m/s
E—

3500 kg
I 12m/s

; Answer on Page 35 4

Note that kinetic energy (1/2mv?) is not conserved here. Before the collision, the moving
putty block has (1 /2)(2)(5%) = 25 joules of kinetic energy. Afterward, the big block has
(1/2)(5)(2%) = 10 joules of kinetic energy. What happened to the energy that was lost? It
was used up deforming the putty.

What if the blocks were marble instead of putty? Then there would be very little deform-
ing, so kinetic energy and momentum would be conserved. The two blocks would end up
having different velocity vectors.

Let’s assume for a moment that they strike each other straight on, so there is motion in
only one direction, both before and after the collision. Can we solve for the speeds of the

first block (v;) and the second block (v;)?

We end up with two equations. Conservation of momentum says:

2vi+3v; =10
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Conservation of kinetic energy says:
(1/2)2)(v7) + (1/2)(3)(v3) = 25
Using the first equation, we can solve for vy in terms of v;:

i 10—3\22
N 2

V1

Substituting this into the second equation, we get:

2
(10—23\;2) +ﬁ s

Simplifying, we get:

Vi —4v, +0=0

This quadratic has two solutions: v, = 0 and v, = 4. v, = 0 represents the situation before
the collision. Substituting in v, = 4:

— 10 —3(4) L
1= =

Thus, if the blocks are hard enough that kinetic energy is conserved, after the collision,

the smaller block will be heading in the opposite direction at 1 m/s. The larger block will

be moving at 4 m/s in the direction of the original motion.
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Exercise 13 Billiard Balls
Working Space

A billiard ball weighing 0.4 kg and trav-
eling at 3 m/s hits a billiard ball (same
weight) at rest. It strikes obliquely (nei-
ther perpendicular nor parallel), so that
the ball at rest starts to move at a 45 de-
gree angle from the path of the ball that
hit it.

Assuming all kinetic energy is conserved,

what is the velocity vector of each ball
after the collision?

3m/s

Answer on Page 35



APPENDIX A

Answers to Exercises

Answer to Exercise 1 (on page 5)

For what t is —4.9t> + 12t + 2 = 0? Start by dividing both sides of the equation by -4.9.

t2 —2.45t — 0.408 = 0

The roots of this are at

Vb2 —4c _ 245 N V/(—2.45)2 — 4(—0.408)

+ 2 2 2

=122+1.36

X—_E
-2

We only care about the root after we release the hammer (t > 0).

1.22 +1.36 = 2.58 seconds after releasing the hammer, it will hit the ground.

Answer to Exercise 2 (on page 10)

1. not arithmetic
arithmetic, common difference is 3

arithmetic, common difference is -4

L

not arithmetic

Answer to Exercise 3 (on page 12)

The first five terms are {-4, 1, 6, 11, 16} and an explicit formula is an, = —4+5(n —1).

33
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Answer to Exercise 4 (on page 13)

The common difference is 377‘ —m = 5. The recursive formula is a, = an_1+7 with a; = 7.

The explicit formula is ap, =+ F(n—1).

Answer to Exercise 5 (on page 14)

1. not geometric

geometric sequence with common ratio r = %

geometric sequence with common ration r = —5

Ll

not geometric

Answer to Exercise 6 (on page 15)

The first five terms are {1, %, %, %, %}. An explicit formula for this sequence is a, =

13,

Answer to Exercise 7 (on page 15)

=

The common ratio is -2 = %4 = —%. A recursive formula would be a,, = an,_1 X —
e

1
with a; = —4. An explicit formula would be a,, = (—4)(—%)(“4).

a

Answer to Exercise 8 (on page 20)

e [1,2,3]+[4,5,6] =1[5,7,9]
o [—1,-2,-3,—-4]+[4,5,6,7] = [3,3,3,3]
e [m,0,0] + [0, 7, 0] + [0, 0, 7] = [, 7, 71]

Answer to Exercise 9 (on page 20)

To get the net force, you add the two forces:
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F=[4.2,5.6,9.0] + [~100.2,30.2,—9.0] = [-96, 35.8,0.0] newtons

Answer to Exercise 10 (on page 22)

o 2x[1,2,3] = 2,4,6]
o [-1,-2,-3,—4] x —3 =[3,6,9,12]

o 7[m, 27, 3] = 72, 2n?, 3n?]

Answer to Exercise 11 (on page 25)

o |1,1,1]|=V3~1.73
e |[-5,—5,—5]| =|—5x [1,1,1]] =5v/3 ~ 8.66
e |[3,4,5] + [-2,—3,—4]| =|[1,1,1]]| =v3~ 1.73

Answer to Exercise 12 (on page 30)
The momentum of the first car is 12,000 kg m/s in the north direction.
The momentum of the second car is 24,000 kg m/s in the east direction.

The new object will be moving northeast. What is the angle compared with the east?

12,000

0 :arc’car124)00O

~ 0.4636 radians ~ 26.565 degrees north of east

The magnitude of the momentum of the new object is v/12,0002 + 24, 000% ~ 26,833 kg m/s

Its new mass is 2,5000 kg. So the speed will be 26,833/2,500 = 10.73 m/s.

Answer to Exercise 13 (on page 32)

The original forward momentum was 1.2 kg m/s. The original kinetic energy is (1/2)(0.4) (32
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= 1.8 joules.

Let s be the post-collision speed of the ball that had been at rest. Let x and y be the
forward and sideways speeds (post-collision) of the other ball. Conservation of kinetic
energy says

(1/2)(0.4)(s?) + (1/2)(0.4) (x> +y?) = 1.8

Forward momentum is conserved:

04— 4 04x=12

ﬂ
Which can be rewritten:
s
xX=3— ﬁ
Sideways momentum stays zero:
(0.4)—= — 0.4y = 0.0
V2
Which can be rewritten:
s
Y=

Substituting into to the conservation of kinetic energy equation above:

2 2
2 _ S S -
(1/2)(0.4)(s") + (1/2)(0.4)((3 ﬁ) + <ﬁ> 1.8

Which can be rewritten:

sz—is—l—O:O

V2

There are two solutions to this quadratic: s = 0 (before collision) and s = 32. Thus,

S



_3
Y=3
and
3 3
x=3-3=3

So, both balls careen off at 45° angles at the exact same speed.

37
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